Show simple item record

Gender Differences in the Behavioral Responses to Cocaine and Amphetamine

dc.contributor.authorBecker, Jill B.en_US
dc.contributor.authorMolenda, Heatheren_US
dc.contributor.authorHummer, Daniel L.en_US
dc.date.accessioned2010-06-01T19:04:53Z
dc.date.available2010-06-01T19:04:53Z
dc.date.issued2001-06en_US
dc.identifier.citationBECKER, JILL B.; MOLENDA, HEATHER; HUMMER, DANIEL L. (2001). "Gender Differences in the Behavioral Responses to Cocaine and Amphetamine." Annals of the New York Academy of Sciences 937(1 THE BIOLOGICAL BASIS OF COCAINE ADDICTION ): 172-187. <http://hdl.handle.net/2027.42/72269>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72269
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11458536&dopt=citationen_US
dc.description.abstractWhen ovariectomized female rats receive estrogen, the response to the psychomotor stimulants amphetamine or cocaine is enhanced. Estrous cycle-dependent differences in amphetamine-stimulated behaviors and striatal dopamine release are also noted. Intact female rats exhibit a greater behavioral response to amphetamine on estrus than they do on other days of the cycle. Ovariectomy results in attenuation of amphetamine-induced behavior and the striatal dopamine response to amphetamine. Physiological doses of estrogen given to ovariectomized rats reinstate both of these responses to a level comparable to that in estrous females. Furthermore, a sex difference is noted, in that females tend to exhibit a greater behavioral response to the psychomotor stimulants, and estrogen enhances this sex difference. Repeated treatment with amphetamine or cocaine produces a progressive increase in behavioral responsiveness with subsequent drug administration, a process known as sensitization. In rodents, behavioral sensitization results in increases in both frequency and duration of psychomotor behaviors such as rotational behavior, stereotyped grooming, headbobs, and forelimb movements. Interestingly, females display greater sensitization of behaviors in response to psychomotor stimulants than do males. Previous research results are summarized, and new results are presented, demonstrating that estrogen selectively enhances components of behavior that exhibit sensitization in female rats. Results also indicate gender differences in sensitization independent of gonadal hormones, suggesting that the neural systems that undergo sensitization are sexually dimorphic.en_US
dc.format.extent131848 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2001 by the New York Academy of Sciencesen_US
dc.subject.otherAmphetamineen_US
dc.subject.otherCocaineen_US
dc.subject.otherDrug Abuseen_US
dc.subject.otherGender Differences in Drug Abuseen_US
dc.subject.otherOvariectomyen_US
dc.subject.otherPsychomotor Stimulantsen_US
dc.titleGender Differences in the Behavioral Responses to Cocaine and Amphetamineen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumPsychology Department, Reproductive Sciences Program, and Neuroscience Program, The University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.identifier.pmid11458536en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72269/1/j.1749-6632.2001.tb03564.x.pdf
dc.identifier.doi10.1111/j.1749-6632.2001.tb03564.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreference1 Wetherington, C.L. & A.R. Roman, Eds. 1995. Drug Addiction Research and the Health of Women. U.S. Department of Health and Human Services. Rockville, MD.en_US
dc.identifier.citedreference2 Kandel, D.B., M.P.P. Warner & R.C. Kessler. 1995. The epidemiology of substance abuse and dependence among women. In Drug Addiction Research and the Health of Women. C.L. Wetherington & A.R. Roman, Eds: 105–130. U.S. Department of Health and Human Services. Rockville, MD.en_US
dc.identifier.citedreferenceKosten, T.R. et al. 1996. Gender differences in response to intranasal cocaine administration to humans. Biol. Psychiatry 39: 147 – 148.en_US
dc.identifier.citedreferenceLukas, S.E. et al. 1996. Sex differences in plasma cocaine levels and subjective effects after acute cocaine administration in human volunteers. Psychopharmacology 125: 346 – 354.en_US
dc.identifier.citedreferenceLynch, W. &M. Carroll. 1999. Sex differences in the acquisition of intravenously self-administered cocaine and heroin in rats. Psychopharmacology 144: 77 – 82.en_US
dc.identifier.citedreferenceLindvall, O. &A. Bjorklund. 1974. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol. Scand. [Suppl] 412: 1 – 48.en_US
dc.identifier.citedreferenceUngerstedt, U. 1971. Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behavior. Acta Physiol. Scand. 82 ( Suppl. 367 ): 49 – 68.en_US
dc.identifier.citedreferenceArbuthnott, G.W. &T.J. Crow 1971. Relation of contraversive turning to unilateral release of dopamine from the nigrostriatal pathway in rats. Exp. Neurol. 30: 484 – 491.en_US
dc.identifier.citedreference9 Costall, B. & R.J. Naylor. 1977. Mesolimbic and extrapyramidal sites for the mediation of stereotyped behavior patterns and hyperactivity by amphetamine and apomorphine in the rat. In Cocaine and Other Stimulants. E.H. Ellinwood & M.M. Kilbey, Eds: 47–76. Plenum Press. New York.en_US
dc.identifier.citedreferenceFink, J.S. &G.P. Smith 1980. Relationships between selective denervation of dopamine terminal fields in the naterior forebrain and behavioral responses to amphetamine and apomorphine. Brain Res. 201: 107 – 127.en_US
dc.identifier.citedreference11 Ungerstedt, U. 1974. Functional dynamics of central monamine pathways. In The Neurosciences: Third Study Program. F.O. Schmitt & F.G. Worden, Eds.: 979–988. MIT Press. Cambridge, MA.en_US
dc.identifier.citedreferenceRobinson, T.E. &J.B. Becker 1983. The rotational behavior model: asymmetry in the effects of unilateral 6-OHDA lesions of the substantia nigra in rats. Brain Res. 264: 127 – 131.en_US
dc.identifier.citedreferenceBecker, J.B., T.E. Robinson & K.A. Lorenz, 1982. Sex differences and estrous cycle variations in amphetamine-elicited rotational behavior. Eur. J. Pharmacol. 80: 65 – 72.en_US
dc.identifier.citedreferenceCamp, D.M., J.B. Becker & T.E. Robinson, 1986. Sex differences in the effects of gonadectomy on amphetamine-induced rotational behavior in rats. Behav. Neural. Biol. 46: 491 – 495.en_US
dc.identifier.citedreferenceRobinson, T.E., D.M. Camp & J.B. Becker, 1981. Gonadectomy attenuates turning behavior produced by electrical stimulation of the nigrostriatal dopamine system in female but not male rats. Neurosci. Lett. 23: 203 – 208.en_US
dc.identifier.citedreferenceBecker, J.B. &M.E. Beer. 1986. The influence of estrogen on nigrostriatal dopamine activity: behavioral and neurochemical evidence for both pre- and postsynaptic components. Behav. Brain Res. 19: 27 – 33.en_US
dc.identifier.citedreferenceBecker, J.B. 1990. Estrogen rapidly potentiates amphetamine-induced striatal dopamine release and rotational behavior during microdialysis. Neurosci. Lett. 118: 169 – 171.en_US
dc.identifier.citedreferenceBecker, J.B. &C.N. Rudick. 1999. Rapid effects of estrogen or progesterone on the amphetamine-induced increase in striatal dopamine are enhanced by estrogen priming: a microdialysis study. Pharmacol. Biochem. Behav. 64: 53 – 57.en_US
dc.identifier.citedreferenceBecker, J.B. &J. Cha. 1989. Estrous cycle-dependent variation in amphetamine-induced behaviors and striatal dopamine release assessed with microdialysis. Behav. Brain Res. 35: 117 – 125.en_US
dc.identifier.citedreferenceCastner, S.A., L. Xiao & J.B. Becker, 1993. Sex differences in striatal dopamine: in vivo microdialysis and behavioral studies. Brain Res. 610: 127 – 134.en_US
dc.identifier.citedreferenceBecker, J.B. 1990. Direct effect of 17b-estradiol on striatum: sex differences in dopamine release. Synapse 5: 157 – 164.en_US
dc.identifier.citedreferenceBecker, J.B. &V.D. Ramirez. 1981. Sex differences in the amphetamine stimulated release of catecholamines from rat striatal tissue in vitro. Brain Res. 204: 361 – 372.en_US
dc.identifier.citedreferenceXiao, L. &J.B. Becker. 1998. Effects of estrogen agonists on amphetamine-stimulated striatal dopamine release. Synapse 29: 379 – 391.en_US
dc.identifier.citedreferenceMermelstein, P.G., J.B. Becker & D.J. Surmeier, 1996. Estradiol reduces calcium currents in rat neostriatal neurons through a membrane receptor. J. Neurosci. 16: 595 – 604.en_US
dc.identifier.citedreferenceKoob, G.F. &F.E. Bloom. 1988. Cellular and molecular mechanisms of drug dependence. Science 242: 715 – 723.en_US
dc.identifier.citedreferenceStewart, J. &A. Badiani. 1993. Tolerance and sensitization to the behavioral effects of drugs. Behav. Pharmacol. 4: 289 – 312.en_US
dc.identifier.citedreference27 Jaffe, J.H. 1990. Drug addiction and drug abuse. In The Pharmacological Basis of Therapeutics. A.G. Gilman et al., Eds: 522–573. Pergamon Press. New York.en_US
dc.identifier.citedreferenceTiffany, S.T. 1990. A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. Psychol. Rev. 97: 147 – 168.en_US
dc.identifier.citedreference29 Watson, S.J. et al. 1989. Neuroanatomical and neurochemical substrates of drug-seeking behavior: overview and future directions. In Molecular and Cellular Aspects of the Drug Addictions. A. Goldstein, ed.:29–91. Springer-Verlag. New York.en_US
dc.identifier.citedreferenceWise, R.A. &M.A. Bozarth. 1987. A psychomotor stimulant theory of addiction. Psychol. Rev. 94: 469 – 492.en_US
dc.identifier.citedreferenceBerridge, K.C. &T.E. Robinson. 1995. The mind of an addicted brain: neural sensitization of wanting versus liking. Curr. Direct. Psychol. Sci. 4: 71 – 76.en_US
dc.identifier.citedreferenceDeminiere, J.M. et al. 1989. Experimental approach to individual vulnerability to psychostimulant addiction. Neurosci. Biobehav. Rev. 13: 141 – 147.en_US
dc.identifier.citedreferenceHorger, B.A., K. Shelton & S. Schenk, 1990. Preexposure sensitizes rats to the rewarding effects of cocaine. Pharm. Biochem. Behav. 37: 707 – 711.en_US
dc.identifier.citedreferenceHorger, B.A., M.K. Giles & S. Schenk, 1992. Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psychopharmacology 107: 271 – 276.en_US
dc.identifier.citedreferenceLett, B.T. 1989. Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychopharmacology (Berl.) 98: 357 – 362.en_US
dc.identifier.citedreference36 Piazza, P.V. et al. 1991. Individual vulnerability to drug self-administration: action of corticosterone on dopaminergic systems as a possible pathophysiological mechanism. In The Mesolimbic Dopamine System: From Motivation to Action. P. Willner & J. Scheel-KrÜger, Eds.: 473–495. John Wiley & Sons Ltd. New York.en_US
dc.identifier.citedreference37 Robinson, T.E. 1993. Persistent sensitizing effects of drugs on brain dopamine systems and behavior: implications for addiction and relapse. In Biological Basis of Substance Abuse. S.G. Korenman & J.D. Barchas, Eds.: 373–402. Oxford University Press. New York.en_US
dc.identifier.citedreferenceRobinson, T.E. &K.C. Berridge. 1993. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18: 247 – 291.en_US
dc.identifier.citedreferenceSchenk, S. et al. 1992. Blockade of sensitizing effects of amphetamine preexposure on cocaine self-administration by the NMDA antagonist MK-801. Soc. Neurosci. Abstr. 18: 1237.en_US
dc.identifier.citedreferenceKalivas, P.W. &J. Stewart. 1991. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Rev. 16: 223 – 244.en_US
dc.identifier.citedreferenceRobinson, T.E. et al. 1985. Enduring enhancement in frontal cortex dopamine utilization in an animal model of amphetamine psychosis. Brain Res. 343: 374 – 447.en_US
dc.identifier.citedreferenceRobinson, T.E. 1984. Behavioral sensitization: characterization of enduring changes in rotational behavior produced by intermittent injections of amphetamine in male and female rats. Psychopharmacology (Berl.) 84: 466 – 475.en_US
dc.identifier.citedreferenceShippenberg, T.S. &C. Heidbreder. 1995. Sensitization to the conditioned rewarding effects of cocaine: pharmacological and temporal characteristics. J. Pharmacol. Exp. 273: 808 – 815.en_US
dc.identifier.citedreferenceShippenberg, T.S., C. Heidbreder & A. Lefevour, 1996. Sensitization to the conditioned rewarding effects of morphine: pharmacology and temporal characteristics. Eur. J. Pharmacol. 299: 33 – 39.en_US
dc.identifier.citedreferenceShippenberg, T.S., A. Lefevour & C. Heidbreder, 1996. k-opioid receptor agonists prevent sensitization to the conditioned rewarding effects of cocaine. J. Pharmacol. Exp. Ther. 276: 545 – 554.en_US
dc.identifier.citedreferencePiazza, P.V. et al. 1989. Factors that predict individual vulnerability to amphetamine self-administration. Science 245: 1511 – 1513.en_US
dc.identifier.citedreferencePiazza, P.V. et al. 1990. Stress- and pharmacologically-induced behavioral sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Res. 514: 22 – 26.en_US
dc.identifier.citedreferenceWoolverton, W.L., L.I. Goldberg & J.Z. Ginos, 1984. Intravenous self-administration of dopamine receptor agonists by rhesus monkeys. J. Pharmacol. Exp. Ther. 230: 678 – 683.en_US
dc.identifier.citedreferencePierre, P. &P. Vevina. 1997. Predisposition to self-administer amphetamine: the contribution of response to novelty and prior exposure to the drug. Psychopharmacology 129: 277 – 284.en_US
dc.identifier.citedreferenceValadez, A. &S. Schenk. 1994. Persistence of the ability of amphetamine preexposure to facilitate acquisition of cocaine self-administration. Pharmacol. Biochem. Behav. 47: 203 – 205.en_US
dc.identifier.citedreferenceRobinson, T.E. &J.B. Becker. 1986. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. 396: 157 – 198.en_US
dc.identifier.citedreferencePaulson, P.E., D.M. Camp & T.E. Robinson, 1991. Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology (Berl.) 103: 480 – 492.en_US
dc.identifier.citedreferenceHenry, D.J. &F.J. White. 1995. The persistence of behavioral sensitization to cocaine parallels enhanced inhibition of nucleus accumbens neurons. J. Neurosci. 15: 6287 – 6299.en_US
dc.identifier.citedreferenceJanak, P.A. et al. 1997. Rapid decay of cocaine-induced behavioral sensitization of locomotor behavior. Behav. Brain Res. 88: 195 – 199.en_US
dc.identifier.citedreferenceSircar, R. &D. Kim. 1999. Female gonadal hormones differentially modulate cocaine-induced behavioral sensitization in Fischer, Lewis and Sprague-Dawley rats. J. Pharmacol. Exp. Ther. 289: 54 – 65.en_US
dc.identifier.citedreferencePost, R.M., S.R. Weiss & A. Pert, 1987. The role of context and conditioning in behavioral sensitization to cocaine. Psychopharmacol. Bull. 23: 425 – 429.en_US
dc.identifier.citedreference57 Segal, D.S. & M.A. Schuckit. 1983. Animal models of stimulant-induced psychosis. In Stimulants: Neurochemical, Behavioral and Clinical Perspectives. I. Creese, ed.:131–167. Raven Press. New York.en_US
dc.identifier.citedreference58 Segal, D.S. & R. Kuczenski. 1994. Behavioral pharmacology of amphetamine. In Amphetamine and Its Analogs: Psychopharmacology, Toxicology and Abuse. A.K. Cho & D.S. Segal, Eds.: 115–150. Academic Press, Inc. San Diego.en_US
dc.identifier.citedreference59 White, F.J. & M.E. Wolf. 1991. Psychomotor stimulants. In The Biological Bases of Drug Tolerance and Dependence. J. Pratt, ed.:153–197. Academic Press. New York.en_US
dc.identifier.citedreference60 Robinson, T.E. 1988. Stimulant drugs and stress: factors influencing individual differences in the susceptibility to sensitization. In Sensitization of the Nervous System. P.W. Kalivas & C. Barnes, Eds.: 145–173. Telford Press. Caldwell, NJ.en_US
dc.identifier.citedreference61 Robinson, T.E. 1991. The neurobiology of amphetamine psychosis: evidence from studies with an animal model. In Taniguchi Symposia on Brain Sciences, Vol. 14. Biological Basis of Schizophrenia. T. Nakazawa, ed.:185–201. Japan Scientific Societies Press. Tokyo.en_US
dc.identifier.citedreferenceCamp, D.M. &T.E. Robinson. 1988. Susceptibility to sensitization. II. The influence of gonadal hormones on enduring changes in brain monoamines and behavior produced by the repeated administration of D-amphetamine or restraint stress. Behav. Brain Res. 30: 69 – 88.en_US
dc.identifier.citedreferenceCamp, D.M. &T.E. Robinson. 1988. Susceptibility to sensitization. I. Sex differences in the enduring effects of chronic D-amphetamine treatment on locomotion, stereotyped behavior and brain monoamines. Behav. Brain Res. 30: 55 – 68.en_US
dc.identifier.citedreferenceRobinson, T.E., J.B. Becker & S.K. Presty, 1982. Long-term facilitation of amphetamine-induced rotational behavior and striatal dopamine release produced by a single exposure to amphetamine: sex differences. Brain Res. 253: 231 – 241.en_US
dc.identifier.citedreferencevan Haaren, F. & M. Meyer, 1991. Sex differences in the locomotor activity after acute and chronic cocaine administration. Pharmacol. Biochem. Behav. 39: 923 – 927.en_US
dc.identifier.citedreferenceForgie, M.L. &J. Stewart. 1994. Sex difference in amphetamine-induced locomotor activity in adult rats: role of testosterone exposure in the neonatal period. Pharmacol. Biochem. Behav. 46: 637 – 645.en_US
dc.identifier.citedreferenceBowman, B.P. et al. 1999. Effects of sex and gonadectomy on cocaine metabolism in the rat. J. Pharm. Exp. Ther. 290: 1316 – 1323.en_US
dc.identifier.citedreferencePeris, J. et al. 1991. Estradiol enhances behavioral sensitization to cocaine and amphetamine-stimulated [ 3 H]dopamine release. Brain Res. 566: 255 – 264.en_US
dc.identifier.citedreferenceCurran, E.J., R.L. Albin & J.B. Becker, 1993. Adrenal medulla grafts in the hemiparkinsonian rat: profile of behavioral recovery predicts restoration of the symmetry between the two striata in measures of pre- and postsynaptic dopamine function. J. Neurosci. 13: 3864 – 3877.en_US
dc.identifier.citedreferenceMcFarlane, D.K., B.J. Martonyi & T.E. Robinson, 1992. An inexpensive automated system for the measurement of rotational behavior in small animals. Behav. Res. Meth. Inst. & Computers 24: 414 – 419.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.