Show simple item record

Multisensory integration in the dorsal cochlear nucleus: unit responses to acoustic and trigeminal ganglion stimulation

dc.contributor.authorShore, Susan E.en_US
dc.date.accessioned2010-06-01T19:06:21Z
dc.date.available2010-06-01T19:06:21Z
dc.date.issued2005-06en_US
dc.identifier.citationShore, S. E. (2005). "Multisensory integration in the dorsal cochlear nucleus: unit responses to acoustic and trigeminal ganglion stimulation." European Journal of Neuroscience 21(12): 3334-3348. <http://hdl.handle.net/2027.42/72293>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72293
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16026471&dopt=citationen_US
dc.description.abstractA necessary requirement for multisensory integration is the convergence of pathways from different senses. The dorsal cochlear nucleus (DCN) receives auditory input directly via the VIIIth nerve and somatosensory input indirectly from the Vth nerve via granule cells. Multisensory integration may occur in DCN cells that receive both trigeminal and auditory nerve input, such as the fusiform cell. We investigated trigeminal system influences on guinea pig DCN cells by stimulating the trigeminal ganglion while recording spontaneous and sound-driven activity from DCN neurons. A bipolar stimulating electrode was placed into the trigeminal ganglion of anesthetized guinea pigs using stereotaxic co-ordinates. Electrical stimuli were applied as bipolar pulses (100 s per phase) with amplitudes ranging from 10 to 100 A. Responses from DCN units were obtained using a 16-channel, four-shank electrode. Current pulses were presented alone or preceding 100- or 200-ms broadband noise (BBN) bursts. Thirty percent of DCN units showed either excitatory, inhibitory or excitatory inhibitory responses to trigeminal ganglion stimulation. When paired with BBN stimulation, trigeminal stimulation suppressed or facilitated the firing rate in response to BBN in 78% of units, reflecting multisensory integration. Pulses preceding the acoustic stimuli by as much as 95 ms were able to alter responses to BBN. Bimodal suppression may play a role in attenuating body-generated sounds, such as vocalization or respiration, whereas bimodal enhancement may serve to direct attention in low signal-to-noise environments.en_US
dc.format.extent1049506 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 Federation of European Neuroscience Societiesen_US
dc.subject.otherAuditoryen_US
dc.subject.otherGuinea Pigen_US
dc.subject.otherMultisensoryen_US
dc.subject.otherNeural Pathwaysen_US
dc.subject.otherSomatosensoryen_US
dc.subject.otherTrigeminalen_US
dc.titleMultisensory integration in the dorsal cochlear nucleus: unit responses to acoustic and trigeminal ganglion stimulationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid16026471en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72293/1/j.1460-9568.2005.04142.x.pdf
dc.identifier.doi10.1111/j.1460-9568.2005.04142.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceAbel, M. D. & Levine, R. A. ( 2004 ) Muscle contractions and auditory perception in tinnitus patients and nonclinical subjects. Cranio, 22, 181 191.en_US
dc.identifier.citedreferenceAdams, J. C. & Warr, W. B. ( 1976 ) Origins of axons in the cat's acoustic striae determined by injection of horseradish peroxidase into severed tracts. J. Comp. Neurol., 170, 107 121.en_US
dc.identifier.citedreferenceArnott, R. H., Wallace, M. N., Shackleton, T. M. & Palmer, A. R. ( 2004 ) Onset neurones in the anteroventral cochlear nucleus project to the dorsal cochlear nucleus. J. Assoc. Res. Otolaryngol., 5, 153 170.en_US
dc.identifier.citedreferenceBabalian, A. L., Ryugo, D. K. & Rouiller, E. M. ( 2003 ) Discharge properties of identified cochlear nucleus neurons and auditory nerve fibers in response to repetitive electrical stimulation of the auditory nerve. Exp. Brain Res., 153, 452 460.en_US
dc.identifier.citedreferenceBell, C., Bodznick, D., Montgomery, J. & Bastian, J. ( 1997 ) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav. Evol., 50 ( Suppl. 1 ), 17 31.en_US
dc.identifier.citedreferenceBrett-Green, B., Fifkova, E., Larue, D. T., Winer, J. A. & Barth, D. S. ( 2003 ) A multisensory zone in rat parietotemporal cortex: intra- and extracellular physiology and thalamocortical connections. J. Comp. Neurol., 460, 223 237.en_US
dc.identifier.citedreferenceBrett-Green, B., Paulsen, M., Staba, R. J., Fifkova, E. & Barth, D. S. ( 2004 ) Two distinct regions of secondary somatosensory cortex in the rat: topographical organization and multisensory responses. J. Neurophysiol., 91, 1327 1336.en_US
dc.identifier.citedreferenceCapra, N. F. ( 1987 ) Localization and central projections of primary afferent neurons that innervate the temporomandibular joint in cats. Somatosens. Res., 4, 201 213.en_US
dc.identifier.citedreferenceColeman, J. R. & Clerici, W. J. ( 1987 ) Sources of projections to subdivisions of the inferior colliculus in the rat. J. Comp. Neurol., 262, 215 226.en_US
dc.identifier.citedreferenceCovey, E., Jones, D. & Casseday, J. ( 1984 ) Projections from the superior olivary complex to the cochlear nucleus in the tree shrew. J. Comp. Neurol., 226, 289 305.en_US
dc.identifier.citedreferenceDavis, K. & Young, E. ( 1997 ) Granule cell activation of complex-spiking neurons in dorsal cochlear nucleus. J. Neurosci., 17, 6798 6806.en_US
dc.identifier.citedreferenceDavis, K. A., Miller, R. L. & Young, E. D. ( 1996 ) Effects of somatosensory and parallel-fiber stimulation on neurons in dorsal cochlear nucleus. J. Neurophysiol., 76, 3012 3024.en_US
dc.identifier.citedreferenceDehner, L. R., Keniston, L. P., Clemo, H. R. & Meredith, M. A. ( 2004 ) Cross-modal circuitry between auditory and somatosensory areas of the cat anterior ectosylvian sulcal cortex: a new inhibitory form of multisensory convergence. Cereb. Cortex, 14, 387 403.en_US
dc.identifier.citedreferenceFujino, K. & Oertel, D. ( 2003 ) Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus. PNAS, 100, 265 270.en_US
dc.identifier.citedreferenceGodfrey, D., Kiang, N. & Norris, B. ( 1975a ) Single unit activity in the posteroventral cochlear nucleus of the cat. J. Comp. Neurol., 162, 247 268.en_US
dc.identifier.citedreferenceGodfrey, D. A., Kiang, N. Y. & Norris, B. E. ( 1975b ) Single unit activity in the dorsal cochlear nucleus of the cat. J. Comp. Neurol., 162, 269 284.en_US
dc.identifier.citedreferenceGolding, N. L. & Oertel, D. ( 1997 ) Physiological identification of the targets of cartwheel cells in the dorsal cochlear nucleus. J. Neurophysiol., 78, 248 260.en_US
dc.identifier.citedreferenceHackney, C. M., Osen, K. K. & Kolston, J. ( 1990 ) Anatomy of the cochlear nuclear complex of guinea pig. Anat. Embryol. (Berl. ), 182, 123 149.en_US
dc.identifier.citedreferenceHaenggeli, C. A., Pongstaporn, T., Doucet, J. R. & Ryugo, D. K. ( 2005 ) Projections from the spinal trigeminal nucleus to the cochlear nucleus in the rat. J. Comp. Neurol., 484, 191 205.en_US
dc.identifier.citedreferenceHirsch, J. A. & Oertel, D. ( 1988 ) Synaptic connections in the dorsal cochlear nucleus of mice, in vitro. J. Physiol. (Lond. ), 396, 549 562.en_US
dc.identifier.citedreferenceItoh, K., Kamiya, H., Mitani, A., Yasui, Y., Takada, M. & Mizuno, N. ( 1987 ) Direct projections from the dorsal column nuclei and the spinal trigeminal nuclei to the cochlear nuclei in the cat. Brain Res., 400, 145 150.en_US
dc.identifier.citedreferenceJoris, P. X. ( 1998 ) Response classes in the dorsal cochlear nucleus and its output tract in the chloralose-anesthetized cat. J. Neurosci., 18, 3955 3966.en_US
dc.identifier.citedreferenceKanold, P. O. & Young, E. D. ( 2001 ) Proprioceptive information from the pinna provides somatosensory input to cat dorsal cochlear nucleus. J. Neurosci., 21, 7848 7858.en_US
dc.identifier.citedreferenceLe Prell, C. G., Shore, S. E., Hughes, L. F. & Bledsoe, S. C. Jr ( 2003 ) Disruption of lateral efferent pathways: functional changes in auditory evoked responses. J. Assoc. Res. Otolaryngol., 4, 276 290.en_US
dc.identifier.citedreferenceLevine, R. ( 1999a ) Somatic modulation of Tinnitus appears to be a fundamental attribute of tinnitus. Proc. 6th Int. Tinnitus Seminar, Cambridge, UK, 1, 93 197.en_US
dc.identifier.citedreferenceLevine, R. A. ( 1999b ) Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis. Am. J. Otolaryngol., 20, 351 362.en_US
dc.identifier.citedreferenceLevine, R. A., Abel, M. & Cheng, H. ( 2003 ) CNS somatosensory auditory interactions elicit or modulate tinnitus. Exp. Brain Res., 153, 643 648.en_US
dc.identifier.citedreferenceLi, H. & Mizuno, N. ( 1997 ) Single neurons in the spinal trigeminal and dorsal column nuclei project to both the cochlear nucleus and the inferior colliculus by way of axon collaterals: a fluorescent retrograde double-labeling study in the rat. Neurosci. Res., 29, 135 142.en_US
dc.identifier.citedreferenceLockwood, A., Salvi, R., Ciad, B., Towsley, M., Wack, M. & Murphy, M. ( 1998 ) The functional neuroanatomy of tinnitus: Evidence for limbic system links and neural plasticity. Neurology, 50, 114 120.en_US
dc.identifier.citedreferenceManis, P. B. ( 1990 ) Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro. J. Neurosci., 10, 2338 2351.en_US
dc.identifier.citedreferenceManis, P. B., Spirou, G. A., Wright, D. D., Paydar, S. & Ryugo, D. K. ( 1994 ) Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus. J. Comp. Neurol., 348, 261 276.en_US
dc.identifier.citedreferenceMontgomery, J. C. & Bodznick, D. ( 1994 ) An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci. Lett., 174, 145 148.en_US
dc.identifier.citedreferenceMugnaini, E., Warr, W. B. & Osen, K. K. ( 1980a ) Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat, and mouse. J. Comp. Neurol., 191, 581 606.en_US
dc.identifier.citedreferenceMugnaini, E., Osen, K. K., Dahl, A. L., Friedrich, V. L. Jr & Korte, G. ( 1980b ) Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse. J. Neurocytol., 9, 537 570.en_US
dc.identifier.citedreferenceNazruddin, Suemune, S., Shirana, Y., Yamauchi, K. & Shigenaga, Y. ( 1989 ) The cells of origin of the hypoglossal afferent nerves and central projections in the cat. Brain Res., 490, 219 235.en_US
dc.identifier.citedreferenceParham, K. & Kim, D. O. ( 1995 ) Spontaneous and sound-evoked discharge characteristics of complex-spiking neurons in the dorsal cochlear nucleus of the unanesthetized decerebrate cat. J. Neurophysiol., 73, 550 561.en_US
dc.identifier.citedreferencePinchoff, R., Burkard, R., Salvi, R., Coad, M. & Lockwood, A. ( 1998 ) Modulation of tinnitus by voluntary jaw movements. Am. J. Otol., 19, 785 789.en_US
dc.identifier.citedreferencePopulin, L. C. & Yin, T. C. T. ( 2002 ) Bimodal interactions in the superior colliculus of the behaving cat. J. Neurosci., 22, 2826 2834.en_US
dc.identifier.citedreferenceRhode, W. & Smith, P. ( 1986 ) Encoding timing and intensity in the ventral cochlear nucleus of the cat. J. Neurophysiol., 56, 261 286.en_US
dc.identifier.citedreferenceRhode, W. S., Smith, P. H. & Oertel, D. ( 1983 ) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus. J. Comp. Neurol., 213, 426 447.en_US
dc.identifier.citedreferenceRomfh, J. H., Capra, N. F. & Gatipon, G. B. ( 1979 ) Trigeminal nerve and temporomandibular joint of the cat: a horseradish peroxidase study. Exp. Neurol., 65, 99 106.en_US
dc.identifier.citedreferenceRyugo, D. K., Willard, F. H. & Fekete, D. M. ( 1981 ) Differential afferent projections to the inferior colliculus from the cochlear nucleus in the albino mouse. Brain Res., 210, 342 349.en_US
dc.identifier.citedreferenceSaade, N., Frangieh, A., Atweh, S. & Jabbur, S. ( 1989 ) Dorsal column input to cochlear neurons in decerebrate-decerebellate cats. Brain Res., 486, 399 402.en_US
dc.identifier.citedreferenceSalar, G., Ori, C., Lob, I., Costella, G., Battaggia, C. & Peserico, L. ( 1992 ) Cerebral blood flow changes induced by electrical stimulation of Gassarian ganglion after experimentally induced subarachnoid haemorhage in pigs. Acta Neurochir. Wien, 119, 115 120.en_US
dc.identifier.citedreferenceSchofield, B. R. & Cant, N. B. ( 1999 ) Descending auditory pathways: projections from the inferior colliculus contact superior olivary cells that project bilaterally to the cochlear nuclei. J. Comp. Neurol., 409, 210 223.en_US
dc.identifier.citedreferenceShore, S., Helfert, R., Bledsoe, S. J., Altschuler, R. & Godfrey, D. ( 1991 ) Descending projections to the guinea pig cochlear nucleus. Hearing Res., 52, 255 268.en_US
dc.identifier.citedreferenceShore, S., Vass, Z., Wys, N. & Altschuler, R. ( 2000 ) The trigeminal ganglion innervates the auditory brainstem. J. Comp. Neurol., 419, 271 285.en_US
dc.identifier.citedreferenceShore, S., El-Kashlan, H. K. & Lu, J. ( 2003 ) Effects of trigeminal ganglion stimulation on unit activity of ventral cochlear nucleus neurons. Neuroscience, 119, 1085 1101.en_US
dc.identifier.citedreferenceShore, S. E. & Moore, J. K. ( 1998 ) Sources of input to the cochlear granule cell region in the guinea pig. Hearing Res., 116, 33 42.en_US
dc.identifier.citedreferenceShore, S. E., Godfrey, D. A., Helfert, R. H., Altschuler, R. A. & Bledsoe, S. C. Jr ( 1992 ) Connections between the cochlear nuclei in guinea pig. Hearing Res., 62, 16 26.en_US
dc.identifier.citedreferenceSpangler, K. & Warr, W. ( 1991 ) The Descending Auditory System. Raven Press, New York.en_US
dc.identifier.citedreferenceSpangler, K., Cant, N., Henkel, C., Farley, G. & Warr, W. ( 1987 ) Descending projections from the superior olivary complex to the cochlear nucleus of the cat. J. Comp. Neurol., 259, 452 465.en_US
dc.identifier.citedreferenceSpirou, G. A., Davis, K. A., Nelken, I. & Young, E. D. ( 1999 ) Spectral integration by type II interneurons in dorsal cochlear nucleus. J. Neurophysiol., 82, 648 663.en_US
dc.identifier.citedreferenceStabler, S. E., Palmer, A. R. & Winter, I. M. ( 1996 ) Temporal and mean rate discharge patterns of single units in the dorsal cochlear nucleus of the anesthetized guinea pig. J. Neurophysiol., 76, 1667 1688.en_US
dc.identifier.citedreferenceStein, B. E. & Meredith, M. A. ( 1990 ) Multisensory integration. Neural and behavioral solutions for dealing with stimuli from different sensory modalities. Ann. N. Y. Acad. Sci., 608, 51 65; discussion 65 70.en_US
dc.identifier.citedreferenceSuemune, S., Nishimori, T., Hosoi, M., Suzuki, Y., Tsuru, H., Kawata, T., Yamauchi, K. & Maeda, N. ( 1992 ) Trigeminal nerve endings of lingual mucosa and musculature of the rat. Brain Res., 586, 162 165.en_US
dc.identifier.citedreferenceTammer, R., Ehrenreich, L. & Jurgens, U. ( 2004 ) Telemetrically recorded neuronal activity in the inferior colliculus and bordering tegmentum during vocal communication in squirrel monkeys (Saimiri sciureus). Behav. Brain Res., 151, 331 336.en_US
dc.identifier.citedreferenceTzounopoulos, T., Kim, Y., Oertel, D. & Trussell, L. O. ( 2004 ) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat. Neurosci., 7, 719 725.en_US
dc.identifier.citedreferenceVass, Z., Shore, S., Nuttall, A. & Miller, J. ( 1998 ) Direct evidence of trigeminal innervation of the cochlear blood vessels. Neuroscience, 84, 559 567.en_US
dc.identifier.citedreferenceWeedman, D. & Ryugo, D. ( 1996 ) Projections from auditory cortex to the cochlear nucleus in rats: synapses on granule cell dendrites. J. Comp. Neurol., 371, 311 324.en_US
dc.identifier.citedreferenceWeinberg, R. J. & Rustioni, A. ( 1987 ) A cuneocochlear pathway in the rat. Neuroscience, 20, 209 219.en_US
dc.identifier.citedreferenceWillard, F. H. & Martin, G. F. ( 1983 ) The auditory brainstem nuclei and some of their projections to the inferior colliculus in the North American opossum. Neuroscience, 10, 1203 1232.en_US
dc.identifier.citedreferenceWinter, I., Robertson, D. & Cole, K. ( 1989 ) Descending projections from auditory brainstem nuclei to the cochlea and cochlear nucleus of the guinea pig. J. Comp. Neurol., 280, 143 157.en_US
dc.identifier.citedreferenceWright, D. D. & Ryugo, D. K. ( 1996 ) Mossy fiber projections from the cuneate nucleus to the cochlear nucleus in the rat. J. Comp. Neurol., 365, 159 172.en_US
dc.identifier.citedreferenceYoung, E. ( 1998 ) Cochlear nucleus. In Shepherd, G. (Ed.), The Synaptic Organization of the Brain. Oxford University Press, Oxford, pp. 121 158.en_US
dc.identifier.citedreferenceYoung, E. D., Nelken, I. & Conley, R. A. ( 1995 ) Somatosensory effects on neurons in dorsal cochlear nucleus. J. Neurophysiol., 73, 743 765.en_US
dc.identifier.citedreferenceZhou, J. & Shore, S. ( 2004 ) Projections from the trigeminal nuclear complex to the cochlear nuclei: a retrograde and anterograde tracing study in the guinea pig. J. Neurosci. Res., 78, 901 907.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.