Show simple item record

Action sequencing is impaired in D 1A -deficient mutant mice

dc.contributor.authorCromwell, Howard C.en_US
dc.contributor.authorBerridge, Kent C.en_US
dc.contributor.authorDrago, Johnen_US
dc.contributor.authorLevine, Michael S.en_US
dc.date.accessioned2010-06-01T19:18:43Z
dc.date.available2010-06-01T19:18:43Z
dc.date.issued1998-07en_US
dc.identifier.citationCromwell, Howard C.; Berridge, Kent C.; Drago, John; Levine, Michael S. (1998). "Action sequencing is impaired in D 1A -deficient mutant mice ." European Journal of Neuroscience 10(7): 2426-2432. <http://hdl.handle.net/2027.42/72456>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72456
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=9749770&dopt=citationen_US
dc.description.abstractThe role of dopamine in the production of behaviour is multifarious in that it can influence different aspects of movement (e.g. movement initiation, sensorimotor integration, and movement sequencing). A characteristic of the dopamine system which seems to be critical for the expression of this diverse influence is its varied receptor population. Previous studies have shown that specific receptor subtype activation leads to specific behavioural responses or alterations of selective aspects of movement. It is known that one of the important influences of dopamine includes sequential co-ordination of ‘syntactic' patterns of grooming movements because moderate loss of the dopaminergic nigrostriatal projections specifically disrupts these patterns without affecting grooming actions in a general fashion (Berridge, K.C. Psychobiology , 15, 336 1989). The specific receptors of the dopamine family which play a key part in this co-ordination of movement sequences is not known. In the present study, we examined the serial order of particular syntactic sequences or chains of grooming actions in mice lacking D 1A receptors to explore the relationship between this receptor subtype and movement sequencing. Mutant mice had shorter grooming bouts and a disruption of the organization of sequential patterns compared with wild-type littermate controls. Sequential disruption was reflected in the failure of D 1A mutants to follow the syntactic pattern of grooming to completion. This sequential disruption deficit appeared to be specific, as mutant mice initiated more syntactic chains than wild-type controls even though they were less likely to complete them. These results support the hypothesis that D 1A receptor activation plays a part in the sequencing of natural action. This conclusion has important implications for the understanding of the functional heterogeneity of dopamine receptor subtypes and of the aetiology of symptoms observed in patients with basal ganglia disease.en_US
dc.format.extent343434 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rightsEuropean Neuroscience Associationen_US
dc.subject.otherDopamineen_US
dc.subject.otherGroomingen_US
dc.subject.otherMovementen_US
dc.subject.otherStriatumen_US
dc.subject.otherSyntaxen_US
dc.titleAction sequencing is impaired in D 1A -deficient mutant miceen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Psychology, University of Michigan, Ann Arbor, Michigan, 48109-1109, USA,en_US
dc.contributor.affiliationotherDepartment of Anatomy, Monash University, Clayton, Victoria 3168, Australia,en_US
dc.contributor.affiliationotherMental Retardation Research Center, University of California, Los Angeles, California 90024-1759, USAen_US
dc.identifier.pmid9749770en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72456/1/j.1460-9568.1998.00250.x.pdf
dc.identifier.doi10.1046/j.1460-9568.1998.00250.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceAlbin, R.L., Reiner, A., Anderson, K.D., Penney, J.B. & Young, A.B. 1990 Striatal and nigral neuron subpopulations in rigid Huntington's disease: implications for the functional anatomy of chorea and rigidity-akinesia. Ann. Neurol., 27, 357 – 365.en_US
dc.identifier.citedreferenceAldridge, J.W. & Berridge, K.C. 1997 Dopamine D1 receptor activation in the rat increases neostriatal activity associated with patterns of sequential grooming movements. Neurosci. Abstr., 23, 191.en_US
dc.identifier.citedreferenceAldridge, J.W., Berridge, K.C., Herman, M. & Zimmer, L. 1993 Neuronal coding of serial order: syntax of grooming in the neostriatum. Psychol. Sci., 4, 391 – 395.en_US
dc.identifier.citedreferenceAmalric, M., Berhow, M., Polis, I. & Koob, G.F. 1993 Selective effects of low dose D2 dopamine receptor antagonism in a reaction-time in rats. Neuropsychopharmacology, 8, 195 – 200.en_US
dc.identifier.citedreferenceAmalric, M. & Koob, G.F. 1987 Depletion of dopamine in the caudate nucleus but not in the nucleus accumbens impairs reaction-time performance in rats. J. Neurosci., 7, 2129 – 2134.en_US
dc.identifier.citedreferenceAsin, K.E., Domino, E.F., Nikkel, A. & Shiosaki, K. 1997 The selective doamine D1 receptor agonist A-86929 maintains efficacy with repeated treatment in rodent and primate models pf Parkinson's disease. J. Pharmacol. Exp. Ther., 281, 454 – 459.en_US
dc.identifier.citedreferenceBeckstead, R.M., Wooten, G.F. & Trugman, J.M. 1988 Distribution of D1 and D2 dopamine receptors in the basal ganglia of the cat determined by quantitative autoradiography. J. Comp. Neurol., 268, 131 – 145.en_US
dc.identifier.citedreferenceBenniger, R.J. 1983 The role of dopamine in locomotor activity and learning. Brain Res. Rev., 6, 173 – 196.en_US
dc.identifier.citedreferenceBernheimer, H. & Hornykiewicz, O. 1965 Decreased homovanillic acid concentration in the brain of parkinsonian subjects as an expression of a disorder of central dopamine metabolism. Klin. Worchenschr., 43, 711 – 715.en_US
dc.identifier.citedreferenceBerridge, K.C. 1989 Substantia nigra 6-OHDA lesions mimic striatopallidal disruption of syntactic grooming chains: a neural systems analysis of sequence control. Psychobiology, 17, 377 – 385.en_US
dc.identifier.citedreferenceBerridge, K.C. 1990 Comparative fine structure of action: rules of form and sequence in the grooming patterns of six rodent species. Behavior, 113, 1 – 22.en_US
dc.identifier.citedreferenceBerridge, K.C. & Fentress, J.C. 1987 Disruption of natural grooming chains after striatopallidal lesions. Psychobiology, 15, 336 – 342.en_US
dc.identifier.citedreferenceBerridge, K.C., Fentress, J.C. & Parr, H. 1987 Natural syntax rules control. action sequence of rats. Behav. Brain Res., 23, 59 – 68.en_US
dc.identifier.citedreferenceBerridge, K.C. & Whishaw, I.Q. 1992 Cortex, striatum and cerebellum: control. of serial order in a grooming sequence. Exp. Brain Res., 90, 275 – 290.en_US
dc.identifier.citedreferenceBraun, A., Fabbrini, G., Mouradian, M.M., Serrati, C., Barone, P. & Chase, T.N. 1987 Selective D-1 dopamine receptor agonist treatment of Parkinson's disease. J. Neural Transm., 68, 41 – 50.en_US
dc.identifier.citedreferenceBrown, V.J. & Robbins, T.W. 1989 Deficits in response space following unilateral striatal dopamine depletion in the rat. J. Neurosci., 9, 983 – 989.en_US
dc.identifier.citedreferenceCepeda, C., Buchwald, N.A. & Levine, M.S. 1993 Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc. Natl Acad. Sci. USA, 90, 9576 – 9580.en_US
dc.identifier.citedreferenceCrawford, C.A., Drago, J., Watson, J.B. & Levine, M.S. 1997 Effects of repeated amphetamine treatment on the locomotor activity of the dopamine D1A-deficient mouse. Neuroreport, 8, 2523 – 2527.en_US
dc.identifier.citedreferenceCromwell, H.C. & Berridge, K.C. 1996 Implementation of action sequences by a neostriatal site: a lesion mapping study of grooming syntax. J. Neurosci., 16, 3444 – 3458.en_US
dc.identifier.citedreferenceCromwell, H.C., Berridge, K.C., Crawford, C.A., Drago, J. & Levine, M.S. 1997 Grooming syntax disrupted in D 1A mutant mice. Exp Brain Res., 177, S51.en_US
dc.identifier.citedreferenceDall'Olio, R., Rimondini, R. & Gandolfi, O. 1996 Effect of NMDA receptor antagonists on D1, D2, and D1/D2 mediated behaviors in intact rats. Psychopharmacology, 123, 187 – 190.en_US
dc.identifier.citedreferenceDeKeyser, J., DeBacker, J.P., Ebinger, G. & Vauquelin, G. 1989 Coupling of D1 dopamine receptors to the guanine nucleotide binding protein Gs is deficient in Huntington's disease. Brain Res., 496, 327 – 330. Please change this reference to match the text! -->en_US
dc.identifier.citedreferenceDelong, M.R., Alexander, G.E., Mitchell, S.J. & Richardson, R.T. 1986 The contribution of basal ganlgia to limb control. Prog. Neurobiol. Res., 64, 161 – 174.en_US
dc.identifier.citedreferenceDenny-Brown, D. 1962 The Basal Ganglia and Their Relation to Disorders of Movement. Oxford University Press, London.en_US
dc.identifier.citedreferenceDrago, J., Gerfen, C.R., Lachowicz, J.E., Steiner, H., Hollon, T.R., Love, P.E., Ooi, G.T., Grinberg, A., Lee, E.J., Huang, S.P., Bartlett, P.F., Jose, P.A., Sibley, D.R. & Westphal, H. 1994 Altered striatal function in a mutant mouse lacking D1A dopamine receptors. Proc. Natl Acad. Sci. USA, 91, 12564 – 12568.en_US
dc.identifier.citedreferenceEmre, M., Rinne, U.K., Rascol, A., Lees, A., Agid, Y. & Lataste, X. 1992 Effects of a selective partial D1 agonist, CY 208–243, in de novo patients with Parkinson's disease. Mov. Disord., 7, 239 – 243.en_US
dc.identifier.citedreferenceFletcher, G.H. & Starr, M.S. 1987 Topography of dopamine behaviors mediated by D1 and D2 receptors revealed by intrastriatal injection of SKF 38393, Lisuride and apomorphone in rats with a unilateral 6-hydroxydopamine-induced lesion. Neuroscience, 20, 589 – 597.en_US
dc.identifier.citedreferenceGerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J. & Sibley, D.R. 1990 D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 250, 1429 – 1432.en_US
dc.identifier.citedreferenceGraybiel, A.M. 1997 The basal ganglia and cognitive pattern generators. Schizophr. Bull., 23, 459 – 469.en_US
dc.identifier.citedreferenceHarrington, D.L. & Haaland, K.Y. 1991 Sequencing in Parkinson's disease: Abnormalities in programming and controlling movement. Brain, 114, 99 – 115.en_US
dc.identifier.citedreferenceHorne, D.J. 1973 Sensorimotor control. in parkinsonism. J. Neurol. Neurosurg. Psychiatry, 36, 742 – 746.en_US
dc.identifier.citedreferenceKowall, N.W., Quigley, B.J. Jr, Krause, J.E., Lu, F., Kosofsky, B.E. & Ferrante, R.J. 1993 Substance P and substance P receptor histochemistry in human neurodegenerative diseases. Regul. Pept., 46, 174 – 185.en_US
dc.identifier.citedreferenceLevine, M.S., Altemus, K.L., Cepeda, C., Cromwell, H.C., Crawford, C.A., Ariano, M.A., Drago, J., Sibley, D.R. & Westphal, H. 1996a Modulatory actions of dopamine on NMDA receptor-mediated responses are reduced in D1A-deficient mutant mice. J. Neurosci., 15, 5870 – 5882.en_US
dc.identifier.citedreferenceLevine, M.S., Li, Z., Cepeda, C., Cromwell, H.C. & Altremus, K.L. 1996b Neuromodulatory actions of dopamine on synaptically-evoked neostriatal responses in slices. Synapse, 24, 65 – 78.en_US
dc.identifier.citedreferenceLjungberg, T., Apicella, P. & Schultz, W. 1991 Responses of monkey midbrain daopmine neurons during delayed alternation performance. Brain Res., 586, 337 – 341.en_US
dc.identifier.citedreferenceMansour, A., Meador-Woodruff, J.H., Bunzow, J.R., Civelli, O., Akil, H. & Watson, S.J. 1991 Localization of DA receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization-receptor autoradiography analysis. J. Neurosci., 10, 2587 – 2600.en_US
dc.identifier.citedreferenceMarsden, C.D. 1982 The mysterious motor function of the basal ganglia: the Robert Wartenburg lecture. Neurology, 32, 514 – 539.en_US
dc.identifier.citedreferenceMarsden, C.D. 1984 Which motor disorder in Parkinson's disease indicates the true motor function of the basal ganglia? In Evered, D., O'Conner, M. (eds), Functions of the Basal Ganglia. Pitman, London, pp. 225–237.en_US
dc.identifier.citedreferenceMartin, J.P. 1967 The Basal Ganglia and Posture. Pitman, London.en_US
dc.identifier.citedreferenceMolloy, A.G. & Waddington, J.L. 1984 Dopaminergic behavior stereospecific promoted by the D1 agonist R-SKF 38393 and selectively blocked by the D1 antagonist SCH 23390. Psychopharmacology, 82, 409 – 410.en_US
dc.identifier.citedreferenceRevard, S., Betschart, J., Fardin, V., Flamand, O. & Blanchard, J.C. 1994 Differential ability of tachykinin NK-1 and NK-2 agonists to produce scratching and grooming behaviors in mice. Brain Res., 651, 199 – 208.en_US
dc.identifier.citedreferenceRichfield, E.K., O'Brien, C.F., Eskin, T. & Shoulson, I. 1991 Heterogeneous dopamine receptor changes in early and late Huntington's disease. Neurosci. Lett, 132, 121 – 126.en_US
dc.identifier.citedreferenceSabol, K.E., Neill, D.B., Wages, S.A., Church, W.H. & Justice, J.B. 1985 Dopamine depletion in a striatal subregion disrupts performance of a skilled motor task in the rat. Brain Res., 335, 33 – 43.en_US
dc.identifier.citedreferenceSawaguchi, T. & Goldman-Rakic, P.S. 1994 The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J. Neurophysiol., 71, 515 – 528.en_US
dc.identifier.citedreferenceSchallert, T. & Hall, S. 1988 ‘Disengage' sensorimotor deficit following apparent recovery from unilateral dopamine depletion. Behav. Brain Res., 30, 15 – 24.en_US
dc.identifier.citedreferenceSchultz, W., Ruffieux, A. & Aebischer, P. 1983 The activity of pars compacta neurons of the monkey substantia nigra in relation to motor activation. Exp. Brain Res., 51, 377 – 387.en_US
dc.identifier.citedreferenceSchultz, W., Studer, A., Romo, R., SundstrÖm, E., Jonsson, G. & Scarnati, E. 1989 Deficits in reaction times and movement times as correlates of hypokinesia in monkeys with MPTP-induced striatal dopamine depletion. J. Neurophysiol., 61, 651 – 668.en_US
dc.identifier.citedreferenceSedvall, G., Karlsson, P., Lundin, A., Anvret, M., Suhara, T., Halldin, C. & Farde, L. 1994 Dopamine D1 receptor number-a sensative PET marker for early brain degeneration in Huntington's disease. Eur. Arch. Psychiatry Clin. Neurosci., 243, 249 – 255.en_US
dc.identifier.citedreferenceSibley, D.R. & Monsma, F.J. 1992 The molecular biology of dopamine receptors. Trends Pharmacol. Sci., 13, 61 – 68.en_US
dc.identifier.citedreferenceStarr, B.S. & Starr, M.S. 1986 Grooming in the mouse is stimulated by the dopamine D1 agonist SKF 38393 and by low doses of the D1 antagonist SCH 23390, but is inhibited by dopamine D2 agonists, D2 antagonists and high doses of SCH 23390. Pharmacol. Biochem. Behav., 24, 837 – 839.en_US
dc.identifier.citedreferenceStoessl, A.J., Brackstone, M., Rajakumar, N. & Gibson, C.J. 1995 Pharmacological characterization of grooming induced by a selective NK-1 tachykinin receptor agonist. Brain Res., 700, 115 – 120.en_US
dc.identifier.citedreferenceStoof, J.C. & Kebabian, J.W. 1984 Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci., 35, 2281 – 2296.en_US
dc.identifier.citedreferenceTalland, G.A. & Schwab, R.S. 1964 Performance with multiple sets in Parkinson's disease. Neuropsychologia, 2, 45 – 53.en_US
dc.identifier.citedreferenceTurjanski, N., Weeks, R., Dolan, R., Harding, A.E. & Brooks, D.J. 1995 Striatal D1 and D2 receptor binding in patients with Huntington's disease and other choreas. A PET study. Brain, 118, 689 – 696.en_US
dc.identifier.citedreferenceVan Wimersma, T.B. & Maigret, C. 1988 Grooming behavior induced by substance P. Eur. J. Pharmacol., 154, 217 – 220.en_US
dc.identifier.citedreferenceWaddington, J.L., Molloy, A.G., O'Boyle, K.M. & Mashurano, M. 1986 Motor consequences of D1 dopamine receptor stimulation and blockade. Clin. Neuropharmacol., 9, 20 – 22.en_US
dc.identifier.citedreferenceWilliams, G.V. & Goldman-Rakic, P.S. 1995 Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376, 572 – 575.en_US
dc.identifier.citedreferenceXu, M., Moratella, R., Gold, L.H., Hiroi, N., Koob, G.F., Graybiel, A.M., White, F.J. & Tonegawa, S. 1994 Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell, 79, 729 – 742.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.