Show simple item record

Scaling ozone responses of forest trees to the ecosystem level in a changing climate

dc.contributor.authorKarnosky, D. F.en_US
dc.contributor.authorPregitzer, Kurt S.en_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorKubiske, Mark E.en_US
dc.contributor.authorHendrey, G. R.en_US
dc.contributor.authorWeinstein, D.en_US
dc.contributor.authorNosal, M.en_US
dc.contributor.authorPercy, Kevin E.en_US
dc.date.accessioned2010-06-01T19:19:13Z
dc.date.available2010-06-01T19:19:13Z
dc.date.issued2005-08en_US
dc.identifier.citationKARNOSKY, D. F.; PREGITZER, K. S.; ZAK, D. R.; KUBISKE, M. E.; HENDREY, G. R.; WEINSTEIN, D.; NOSAL, M.; PERCY, K. E. (2005). "Scaling ozone responses of forest trees to the ecosystem level in a changing climate." Plant, Cell & Environment 28(8): 965-981. <http://hdl.handle.net/2027.42/72464>en_US
dc.identifier.issn0140-7791en_US
dc.identifier.issn1365-3040en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72464
dc.description.abstractMany uncertainties remain regarding how climate change will alter the structure and function of forest ecosystems. At the Aspen FACE experiment in northern Wisconsin, we are attempting to understand how an aspen/birch/maple forest ecosystem responds to long-term exposure to elevated carbon dioxide (CO 2 ) and ozone (O 3 ), alone and in combination, from establishment onward. We examine how O 3 affects the flow of carbon through the ecosystem from the leaf level through to the roots and into the soil micro-organisms in present and future atmospheric CO 2 conditions. We provide evidence of adverse effects of O 3 , with or without co-occurring elevated CO 2 , that cascade through the entire ecosystem impacting complex trophic interactions and food webs on all three species in the study: trembling aspen ( Populus tremuloides Michx . ), paper birch ( Betula papyrifera Marsh), and sugar maple ( Acer saccharum Marsh). Interestingly, the negative effect of O 3 on the growth of sugar maple did not become evident until 3 years into the study. The negative effect of O 3 effect was most noticeable on paper birch trees growing under elevated CO 2 . Our results demonstrate the importance of long-term studies to detect subtle effects of atmospheric change and of the need for studies of interacting stresses whose responses could not be predicted by studies of single factors. In biologically complex forest ecosystems, effects at one scale can be very different from those at another scale. For scaling purposes, then, linking process with canopy level models is essential if O 3 impacts are to be accurately predicted. Finally, we describe how outputs from our long-term multispecies Aspen FACE experiment are being used to develop simple, coupled models to estimate productivity gain/loss from changing O 3 .en_US
dc.format.extent1676348 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 Blackwell Publishing Ltden_US
dc.subject.otherPopulus Tremuloidesen_US
dc.subject.otherCarbon Accumulation and Allocationen_US
dc.subject.otherCarbon Dioxideen_US
dc.subject.otherC and N Cyclingen_US
dc.subject.otherClimate Changeen_US
dc.subject.otherEcosystem Scalingen_US
dc.subject.otherModellingen_US
dc.subject.otherPest Interactionsen_US
dc.subject.otherTrembling Aspenen_US
dc.subject.otherTropospheric Ozoneen_US
dc.titleScaling ozone responses of forest trees to the ecosystem level in a changing climateen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, USA,en_US
dc.contributor.affiliationumSchool of Natural Resources & Environment, The University of Michigan, 430 E. University, Ann Arbor, Michigan 48109–1115, USA,en_US
dc.contributor.affiliationotherUSDA Forest Service, North Central Research Station, Forestry Sciences Laboratory, 5985 Highway K, Rhinelander, Wisconsin 54501, USA,en_US
dc.contributor.affiliationotherBrookhaven National Laboratory and Queens College CUNY, 65–30 Kissena Blvd., Flushing, NY 11367, USA,en_US
dc.contributor.affiliationotherBoyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853, USA,en_US
dc.contributor.affiliationotherDepartment of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1 N4 anden_US
dc.contributor.affiliationotherNatural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, PO Box 4000, Fredericton, New Brunswick, Canada E3B 5P7en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72464/1/j.1365-3040.2005.01362.x.pdf
dc.identifier.doi10.1111/j.1365-3040.2005.01362.xen_US
dc.identifier.sourcePlant, Cell & Environmenten_US
dc.identifier.citedreferenceAndersen C. P. ( 2003 ) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytologist 157, 213 – 228.en_US
dc.identifier.citedreferenceAshmore M. R. ( 2005 ) Assessing the future global impacts of ozone on vegetation. Plant, Cell and Environment 28 doi: 10.1111/j.1365-3040.2005.01342.xen_US
dc.identifier.citedreferenceAwmack C. S., Harrington R. & Lindroth R. L. ( 2004 ) Individual performance does not predict aphid population responses to elevated atmospheric CO 2 or O 3. Global Change Biology 10, 1414 – 1423.en_US
dc.identifier.citedreferenceBeedlow P. A., Tingey D. T., Phillips D. L., Hogsett W. E. & Olszyk D. M. ( 2004 ) Rising atmospheric CO 2 and carbon sequestration in forests. Frontiers in Ecology and the Environment 2, 315 – 322.en_US
dc.identifier.citedreferenceBielenberg D. G., Lynch J. P. & Pell E. J. ( 2002 ) Nitrogen dynamics during O 3 -induced accelerated senescence in hybrid poplar. Plant, Cell and Environment 25, 501 – 512.en_US
dc.identifier.citedreferenceCCME (Canadian Council of Ministers of the Environment ) ( 2000 ) Canada-Wide Standards for Particulate Matter (PM) and Ozone. Available at http://www.ccme.ca/assets/pdf/pmozone_standard_e.pdf.en_US
dc.identifier.citedreferenceChakraborty S., Tiedemann A. V. & Teng P. S. ( 2000 ) Climate change: Potential impact on plant diseases. Environmental Pollution 108, 317 – 326.en_US
dc.identifier.citedreferenceChappelka A. H. & Samuelson L. J. ( 1998 ) Ambient ozone effects on forest trees of the eastern United States: a review. New Phytologist 139, 91 – 108.en_US
dc.identifier.citedreferenceColeman M. D., Dickson R. E., Isebrands J. G. & Karnosky D. F. ( 1995 ) Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology 15, 593 – 604.en_US
dc.identifier.citedreferenceColeman M. D., Dickson R. E., Isebrands J. G. & Karnosky D. F. ( 1996 ) Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone. Tree Physiology 16, 145 – 152.en_US
dc.identifier.citedreferenceCostonis A. C. ( 1970 ) Acute foliar injury of eastern white pine induced by sulfur dioxide and ozone. Phytopathology 60, 994 – 999.en_US
dc.identifier.citedreferenceDavey P. A., Hunt S., Graham J. H., DeLucia E. H., Drake B. G., Karnosky D. F. & Long S. P. ( 2004 ) Respiratory oxygen uptake is not decreased by an instantaneous elevation of [CO 2 ], but is increased with long-term growth in the field at elevated [CO 2 ]. Plant Physiology 134, 520 – 527.en_US
dc.identifier.citedreferenceDickson R. E., Coleman M. D., Pechter P. & Karnosky D. F. ( 2001 ) Growth and crown architecture of two aspen genotypes exposed to interacting ozone and carbon dioxide. Environmental Pollution 115, 319 – 334.en_US
dc.identifier.citedreferenceDickson R. E., Lewin K. F., Isebrands J. G., et al. ( 2000 ) Forest Atmosphere Carbon Transfer Storage-II (FACTS II) – The Aspen Free-air CO 2 and O 3 Enrichment (FACE) Project in an Overview. General Technical Report NC-214. USDA Forest Service North Central Research Station, Rhinelander, WI, USA..en_US
dc.identifier.citedreferenceDochinger L. S., Bender F. W., Fox F. L. & Heck W. W. ( 1970 ) Chlorotic dwarf of eastern white pine caused by an ozone and sulphur dioxide interaction. Nature 225, 476.en_US
dc.identifier.citedreferenceDunn D. B. ( 1959 ) Some effects of air pollution on Lupinus in the Los Angeles area. Ecology 40, 621.en_US
dc.identifier.citedreferenceFederal Register ( 1997 ) National Ambient Air Quality Standards for Ozone, Rules and Regulations, 40 CFR Part 50, Final Rule. 62 (138), July 18 1997, p. 38856. Environmental Protection Agency, Washington, DC, USA.en_US
dc.identifier.citedreferenceFowler D., Cape J. N., Coyle M., Flechard C., Kuylenstierna J., Hicks K., Derwent D., Johnson C. & Stevenson D. ( 1999 ) The global exposure of forests to air pollutants. Water, Air, and Soil Pollution 116, 5 – 32.en_US
dc.identifier.citedreferenceGrennfelt P. ( 2004 ) New directions: Recent research findings may change control policies. Atmospheric Environment 38, 2215 – 2216.en_US
dc.identifier.citedreferenceHarrington R., Woiwod I. & Sparks T. ( 1999 ) Climate change and trophic interactions. Trees 14, 146 – 150.en_US
dc.identifier.citedreferenceHendrey G. R., Ellsworth D. S., Lewin K. F. & Nagy J. ( 1999 ) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO 2. Global Change Biology 5, 293 – 309.en_US
dc.identifier.citedreferenceHolmes W. E., Zak D. R., Pregitzer K. S. & King J. S. ( 2003 ) Soil nitrogen transformations under Populus tremuloides, Betula papyrifera and Acer saccharum following 3 years exposure to elevated CO 2 and O 3. Global Change Biology 9, 1743 – 1750.en_US
dc.identifier.citedreferenceHolton M. K., Lindroth R. L. & Nordheim E. V. ( 2003 ) Foliar quality influences tree–herbivore–parasitoid interactions: effects of elevated CO 2, O 3, and genotype. Oecologia 137, 233 – 244.en_US
dc.identifier.citedreferenceHost G. E., Isebrands J. G., Theseira G. W., Kiniry J. R. & Graham R. L. ( 1996 ) Temporal and spatial scaling from individual trees to plantations: a modelling strategy. Biomass and Bioenergy 11, 233 – 243.en_US
dc.identifier.citedreferenceIsebrands J. G., Host G. E., Lenz K. E., Wu G. & Stech H. W. ( 2000 ) Hierarchical, parallel computing strategies using component object model for process modelling responses to forest plantations to itneracting multiple stresses. In Forest Ecosystem Modelling, Upscaling, and Remote Sensing (eds R. J. M. Ceulemans, F. Veroustraete, V. Gond & J. B. H. F. VanRensbergen ), pp. 123 – 135. SPB. Academic Publishing, The Hague. The Netherlands.en_US
dc.identifier.citedreferenceIsebrands J. G., McDonald E. P., Kruger E., Hendrey G., Pregitzer K., Percy K., Sober J. & Karnosky D. F. ( 2001 ) Growth responses of Populus tremuloides clones to interacting carbon dioxide and tropospheric ozone. Environmental Pollution 115, 359 – 371.en_US
dc.identifier.citedreferenceKaakinen S., Kostiainen K., Ek F., SaranpÄÄ P., Kubiske M. E., Sober J., Karnosky D. F. & Vapaavuori E. ( 2004 ) Stem wood properties of Populus tremuloides, Betula papyrifera and Acer saccharum saplings after three years of treatments to elevated carbon dioxide and ozone. Global Change Biology 10, 1513 – 1525.en_US
dc.identifier.citedreferenceKÄrenlampi L. & SkÄrby L. ( 1996 ) Critical Levels for Ozone in Europe: Testing and Finalizing the Concepts, UN-ECE Workshop Report. UN-ECE Convention on Long–Range Transboundary Air Pollution. Kuopio, Finland, April 15–17, 1996. Department of Ecology and Environmental Science. University of Kuopio, Kuopio, Finland.en_US
dc.identifier.citedreferenceKarlsson P. E., SelldÉn G. & Pleijel H. (eds) ( 2003 ) Establishing Ozone Critical Levels II UNECE Workshop Report. IVL report B 1523. IVL Swedish Environmental Research Institute, Gothenburg, Sweden.en_US
dc.identifier.citedreferenceKarnosky D. F. ( 2005 ) Ozone effects on forest ecosystems under a changing global environment. Journal of Agricultural Meteorology 60, 353 – 358.en_US
dc.identifier.citedreferenceKarnosky D. F., Gagnon Z. E., Dickson R. E., Coleman M. D., Lee E. H. & Isebrands J. G. ( 1996 ) Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings. Canadian Journal of Forest Research 26, 23 – 37.en_US
dc.identifier.citedreferenceKarnosky D. F., Gielen G., Ceulemans R., Schlesinger W. H., Norby R. J., Oksanen E., Matyssek R. & Hendrey G. R. ( 2001 ) Face systems for studying the impacts of greenhouse gases on forest ecosystems. In The Impact of Carbon Dioxide and Other Greenhouse Gases on Forest Ecosystems (eds D. F. Karnosky, G. Scarascia-Mugnozza, R. Ceulemans & J. Innes ), pp. 297 – 324. CABI Publishing, New York, USA.en_US
dc.identifier.citedreferenceKarnosky D. F., Mankovska B., Percy K., et al. ( 1999 ) Effects of tropospheric O 3 on trembling aspen and interaction with CO 2: Results from an O 3 -gradient and a FACE experiment. Journal of Water, Air and Soil Pollution 116, 311 – 322.en_US
dc.identifier.citedreferenceKarnosky D. F., Percy K. E., Chappelka A. H. & Krupa S. V. ( 2003a ) Air pollution and global change impacts on forest ecosystems: Monitoring and research needs. In Air Pollution, Global Change and Forests in the New Millennium (eds D. F. Karnosky, K. E. Percy, A. H. Chappelka, J. Pikkarainen & C. J. Simpson ), pp. 447 – 459. Elsevier, Oxford, UK.en_US
dc.identifier.citedreferenceKarnosky D. F., Pregitzer K. S., Hendrey G. R., et al. ( 2003b ) Impacts of interacting CO 2 and O 3 on trembling aspen: results from the aspen FACE experiment. Functional Ecology 17, 289 – 304.en_US
dc.identifier.citedreferenceKarnosky D. F., Percy K. E., Mankovska B., Prichard T., Noormets A., Dickson R. E., Jepsen E. & Isebrands J. G. ( 2003c ) Ozone affects the fitness of trembling aspen. In Air Pollution, Global Change and Forests in the New Millennium (eds D. F. Karnosky, K. E. Percy, A. H. Chappelka, J. Pikkarainen & C. J. Simpson ), pp. 199 – 209. Elsevier, Oxford, UK.en_US
dc.identifier.citedreferenceKarnosky D. F., Percy K. E., Xiang B., et al. ( 2002 ) Interacting elevated CO 2 and tropospheric O 3 predisposes aspen ( Populus tremuloides Michx.) to infection by rust ( Melampsora medusae f.sp. tremuloidae ). Global Change Biology 8, 329 – 338.en_US
dc.identifier.citedreferenceKarnosky D. F. & Pregitzer K. S. ( 2005 ) Impacts of elevated CO 2 and O 3 on northern temperate forest ecosystems: Results from the Aspen FACE experiment. In Managed Ecosystems and CO 2: Case Studies, Processes and Perspectives. Ecological Studies. (eds J. NÖsberger, S. P. Long, G. R. Hendry, M. Stitt, R. J. Norby & H. Bum ). Springer-Verlag, Berlin, Germany, in press.en_US
dc.identifier.citedreferenceKeeling C. M., Whort T. P., Wahlen M. & Vander Plict J. ( 1995 ) International extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666 – 670.en_US
dc.identifier.citedreferenceKing J. S., Hanson P. J., Bernhardt E., DeAngelis P., Norby R. J. & Pregitzer K. S. ( 2004 ) A multi-year synthesis of soil respiration responses to elevated atmospheric CO 2 from four forest FACE experiments. Global Change Biology 10, 1027 – 1042.en_US
dc.identifier.citedreferenceKing J. S., Pregitzer K. S., Zak D. R., Karnosky D. F., Isebrands J. G., Dickson R. E., Hendrey G. R. & Sober J. ( 2001 ) Fine root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO 2 and tropospheric O 3. Oecologia 128, 237 – 250.en_US
dc.identifier.citedreferenceKolb T. E. & Matyssek R. ( 2001 ) Limitations and perspectives about scaling ozone impacts in trees. Environmental Pollution 115, 373 – 393.en_US
dc.identifier.citedreferenceKopper B. J. & Lindroth R. L. ( 2003a ) Responses of trembling aspen ( Populus tremuloides ) phytochemistry and aspen blotch leafminer ( Phyllonorycter tremuloidiella ) performance to elevated levels of atmospheric CO 2 and O 3. Agricultural and Forest Entomology 5, 17 – 26.en_US
dc.identifier.citedreferenceKopper B. J. & Lindroth R. L. ( 2003b ) Effects of elevated carbon dioxide and ozone on the genotypic response of aspen phytochemistry and the performance of an herbivore. Oecologia 134, 95 – 103.en_US
dc.identifier.citedreferenceKrupa S. V. & Kickert R. N. ( 1997 ) Ambient ozone (O 3 ) and adverse crop response. Environmental Review 5, 55 – 77.en_US
dc.identifier.citedreferenceKrupa S., Nosal M., Ferdinand J. A., Stevenson R. E. & Skelly J. M. ( 2003 ) A multi-variate statistical model integrating passive sampler and meteorology data to predict the frequency distributions of hourly ambient ozone (O 3 ) concentrations. Environmental Pollution 124, 173 – 178.en_US
dc.identifier.citedreferenceKull O., Sober A., Coleman M. D., Dickson R. E., Isebrands J. G., Gagnon Z. & Karnosky D. F. ( 1996 ) Photosynthetic response of aspen clones to simultaneous exposures of ozone and CO 2. Canadian Journal of Forest Research 16, 639 – 648.en_US
dc.identifier.citedreferenceLaurence J. A. & Andersen C. P. ( 2003 ) Ozone and natural systems: understanding exposure, response and risk. Environment Internation 29, 155 – 160.en_US
dc.identifier.citedreferenceLaurence J. A., Retzlaff W. A., Kern J. S., Lee E. H., Hogsett W. E. & Weinstein D. A. ( 2001 ) Predicting the regional impact of ozone and precipitation on the growth of loblolly pine and yellow-poplar using linked TREGRO and ZELIG models. Forest Ecology and Management 146, 251 – 267.en_US
dc.identifier.citedreferenceLindroth R. L., Kopper B. J., Parsons W. F. J., Bockheim J. G., Sober J., Hendrey G. R., Pregitzer K. S., Isebrands J. G. & Karnosky D. F. ( 2001 ) Effects of elevated carbon dioxide and ozone on foliar chemical composition and dynamics in trembling aspen ( Populus tremuloides ) and paper birch ( Betula papyrifera ). Environmental Pollution 115, 395 – 404.en_US
dc.identifier.citedreferenceLoranger G. I., Pregitzer K. S. & King J. S. ( 2004 ) Elevated CO 2 and O 3 concentrations differentially affect selected groups of the fauna in temperate forest soils. Soil Biology and Biochemistry 36, 1521 – 1524.en_US
dc.identifier.citedreferenceLoya W. M., Pregitzer K. S., Karberg N. J., King J. S. & Giardina C. P. ( 2003 ) Reduction of soil carbon formation by tropospheric ozone under elevated carbon dioxide. Nature 425, 705 – 707.en_US
dc.identifier.citedreferenceMankovska B., Percy K. & Karnosky D. F. ( 1998 ) Impact of ambient tropospheric O 3, CO 2, and particulates on the epicuticular waxes of aspen clones differing in O 3 tolerance. EkolÓgia (Bratislava) 18, 200 – 210.en_US
dc.identifier.citedreferenceMankovska B., Percy K. & Karnosky D. F. ( 2003 ) Impact of greenhouse gases on epicuticular waxes of Populus tremuloides Michx. Results from an open-air exposure and a natural O 3 gradient. EkolÓgia (Bratislava) 22 ( Suppl. 1 ), 235 – 243.en_US
dc.identifier.citedreferenceMartin M. J., Host G. E., Lenz K. E. & Isebrands J. G. ( 2001 ) Simulating the growth response of aspen to elevated ozone; a mechanistic approach to scaling a leaf-level model of ozone effects on photosynthesis to a complex canopy architecture. Environmental Pollution 115, 425 – 436.en_US
dc.identifier.citedreferenceMatyssek R. & Sandermann H. ( 2003 ) Impact of ozone on trees: an ecophysiological perspective. In Progress in Botany 64 (eds K. Esser, U. LÜttge, W. Beyschlag & F. Hellwig ), pp. 349 – 404. Springer-Verlag, Heidelberg, Germany.en_US
dc.identifier.citedreferenceMcDonald E. P., Kruger E. L., Riemenschneider D. E. & Isebrands J. G. ( 2002 ) Competitive status influences tree-growth responses to elevated CO 2 and O 3 in aggrading aspen stands. Functional Ecology 16, 792 – 801.en_US
dc.identifier.citedreferenceMcLeod A. R. & Long S. P. ( 1999 ) Free-air carbon dioxide enrichment (FACE) in global change research: a review. Advances in Ecological Research 28, 1 – 56.en_US
dc.identifier.citedreferenceMiller P. R. & McBride J. R. (eds) ( 1999 ) Oxidant Air Pollution Impacts in the Montane Forests of Southern California, pp. 397 – 416. Springer-Verlag, New York, USA.en_US
dc.identifier.citedreferenceMiller P. R., McCutchan M. H. & Milligan H. P. ( 1972 ) Oxidant air pollution in the Central Valley, Sierra Nevada foothills, and Mineral King Valley of California. Atmospheric Environment 6, 623 – 633.en_US
dc.identifier.citedreferenceMiller P. R. & Millecan A. A. ( 1971 ) Extent of oxidant air pollution damage to some pine and other conifers in California. Plant Disease Reporter 55, 555 – 559.en_US
dc.identifier.citedreferenceMiller P. R., Parmeter J. R. Jr, Taylor O. C. & Cardiff E. A. ( 1963 ) Ozone injury to foliage of Pinus ponderosa. Phytopathology 53, 1072 – 1076.en_US
dc.identifier.citedreferenceMondor E. B., Tremblay M. N., Awmack C. S. & Lindroth R. L. ( 2004 ) Divergent pheromone-mediated insect behaviour under global atmospheric change. Global Change Biology 10, 1820 – 1824.en_US
dc.identifier.citedreferenceNoormets A., McDonald E. P., Dickson R. E., Kruger E. L., Sober A., Isebrands J. G. & Karnosky D. F. ( 2001a ) The effect of elevated carbon dioxide and ozone on leaf- and branch-level photosynthesis and potential plant-level carbon gain in aspen. Trees 15, 262 – 270.en_US
dc.identifier.citedreferenceNoormets A., Sober A., Pell E. J., Dickson R. E., Podila G. K., Sober J., Isebrands J. G. & Karnosky D. F. ( 2001b ) Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen ( Populus tremuloides Michx.) clones exposed to elevated CO 2 and/or O 3. Plant, Cell and Environment 24, 327 – 336.en_US
dc.identifier.citedreferenceNosal M., Legge A. H. & Krupa S. V. ( 2000 ) Application of a stochastic, Weibull probability generator for replacing missing data on ambient concentrations of gaseous pollutants. Environmental Pollution 108, 439 – 446.en_US
dc.identifier.citedreferenceOksanen E. ( 2003 ) Physiological responses of birch ( Betula pendula ) to ozone: a comparison between open-soil-grown trees exposed for six growing seasons and potted seedlings exposed for one season. Tree Physiology 23, 603 – 614.en_US
dc.identifier.citedreferenceOksanen E., HÄikiÖ E., Sober J. & Karnosky D. F. ( 2003 ) Ozone-induced H 2 O 2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytologist 161, 791 – 799.en_US
dc.identifier.citedreferenceOksanen E., Sober J. & Karnosky D. F. ( 2001 ) Interactions of elevated CO 2 and ozone in leaf morphology of aspen ( Populus tremuloides ) and birch ( Betula papyrifera ) in aspen FACE experiment. Environmental Pollution 115, 437 – 446.en_US
dc.identifier.citedreferenceParsons W. F. J., Lindroth R. L. & Bockheim J. G. ( 2004 ) Decomposition of Betula papyrifera leaf litter under the independent and interactive effects of elevated CO 2 and O 3. Global Change Biology 10, 1666 – 1677.en_US
dc.identifier.citedreferencePell E. J., Enyedi A., Eckardt N. & Landry L. ( 1990 ) Ozone-induced alterations in quantity and activity of rubisco: implications for foliar senescence. In Biology Oxidation Systems (eds B. G. Fox & J. D. Lipscomb ), pp. 389 – 403. Academic Press, New York, USA.en_US
dc.identifier.citedreferencePercy K. E., Awmack C. S., Lindroth R. L., et al. ( 2002 ) Altered performance of forest pests under CO 2 - and O 3 -enriched atmospheres. Nature 420, 403 – 407.en_US
dc.identifier.citedreferencePercy K. E., Legge A. H. & Krupa S. V. ( 2003a ) Tropospheric ozone: A continuing threat to global forests? In Air Pollution, Global Change and Forests in the New Millennium (eds D. F. Karnosky, K. E. Percy, A. H. Chappelka, J. Pikkarainen & C. J. Simpson ), pp. 85 – 118. Elsevier, Oxford, UK.en_US
dc.identifier.citedreferencePercy K. E., Mankovska B., Hopkin A., Callan B. & Karnosky D. F. ( 2003b ) Ozone affects leaf surface pest interactions. In Air Pollution, Global Change and Forests in the New Millennium (eds D. F. Karnosky, K. E. Percy, A. H. Chappelka, J. Pikkarainen & C. J. Simpson ), pp. 247 – 257. Elsevier, Oxford, UK.en_US
dc.identifier.citedreferencePhillips R. L., Zak D. R. & Holmes W. E. ( 2002 ) Microbial community composition and function beneath temperate trees exposed to elevated atmospheric CO 2 and O 3. Oecologia 131, 236 – 244.en_US
dc.identifier.citedreferencePiva R. J. ( 1996 ) Pulpwood Production in the Lake States, 1994, Research Note NC-368. USDA. Forest Service, North Central Research Station, Rhinelander, WI, USA.en_US
dc.identifier.citedreferenceRausher H. M., Isebrands J. G., Host G. E., Dickson R. E., Dickmann D. I., Crow T. R. & Michael D. A. ( 1990 ) Ecophys: an ecosphysiological growth process model for juvenile poplar. Tree Physiology 7, 255 – 281.en_US
dc.identifier.citedreferenceSamuelson L. & Kelly J. M. ( 2001 ) Scaling ozone effects from seedlings to forest trees. New Phytologist 149, 21 – 41.en_US
dc.identifier.citedreferenceSharma P., Sober A., Sober J., Podila G. K., Kubiske M. E., Mattson W. J., Isebrands J. G. & Karnosky D. F. ( 2003 ) Moderation of [CO 2 ]-induced gas exchange responses by elevated tropospheric O 3 in trembling aspen and sugar maple. Ekologia (Bratislava) 22 ( Suppl. 1 ), 318 – 331.en_US
dc.identifier.citedreferenceSkÄrby L., Ro-Poulsen H., Wellburn F. A. M. & Sheppard L. J. ( 1998 ) Impacts of ozone on forests: a European perspective. New Phytologist 139, 109 – 122.en_US
dc.identifier.citedreferenceTema Nord ( 1994 ) Critical Levels for Tropospheric Ozone – Concepts and Criteria Tested for Nordic Conditions. L. SkÄrby (Coordinator). Nordic Council of Ministers, Copenhagen, Denmark.en_US
dc.identifier.citedreferenceTheseira G. W., Host G. E., Isebrands J. G. & Whisler F. D. ( 2003 ) SOILPSI: a potential-driven three-dimensional soil water redistribution model – description and comparative evaluation. Environmental Software and Modeling 18, 13 – 23.en_US
dc.identifier.citedreferenceUN-ECE ( 1988 ) ECE Critical Levels Workshop, Final Draft Report. March 14–18, 1988. UN-ECE, Bad Harzburg, Federal Republic of Germany.en_US
dc.identifier.citedreferenceUrban D. L. ( 1990 ) A versatile model to simulate forest pattern: A user's guide to Zelig, Version 1. 0. Environmental. Sciences Department. University of Virginia, Charlottesville, VA., USAen_US
dc.identifier.citedreferenceUrban D. L., Bonan G. B., Smith T. M. & Shugart H. H. ( 1991 ) Spatial applications of gap models. Forest Ecology and Management 42, 95 – 110.en_US
dc.identifier.citedreferenceWeinstein D. A., Beloin R. M. & Yanai R. D. ( 1991 ) Modeling changes in red spruce carbon balance and allocation in response to interacting ozone and nutrient stress. Tree Physiology 9, 127 – 146.en_US
dc.identifier.citedreferenceWeinstein D. A., Gollands B. & Retzlaff W. A. ( 2001b ) The effects of ozone on a lower slope forest of the Great Smoky Mountain National Park: Simulations Linking an Individual Tree Model to a Stand Model. Forest Science 47, 29 – 42.en_US
dc.identifier.citedreferenceWeinstein D. A., Laurence J. A., Retzlaff W. A., Kern J. S., Lee E. H., Hogsett W. E. & Weber J. ( 2005 ) Predicting the effects of tropospheric ozone on regional productivity of ponderosa pine and white fir. Forest Ecology and Management 205, 73 – 89.en_US
dc.identifier.citedreferenceWeinstein D. A., Woodbury P. B., Gollands B., King P., Lepak L. & Pendleton D. ( 2001a ) Assessment of Effects of Ozone on Forest Resources in the Southern Appalachian Mountains, Final Report. Southern Appalachian Mountain Initiative, Asheville, NC, USA.en_US
dc.identifier.citedreferenceWustman B. A., Oksanen E., Karnosky D. F., Sober J., Isebrands J. G., Hendrey G. R., Pregitzer K. S. & Podila G. K. ( 2001 ) Effects of elevated CO 2 and O 3 on aspen clones varying in O 3 sensitivity: Can CO 2 ameliorate the harmful effects of O 3 ? Environmental Pollution 115, 473 – 481.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.