Show simple item record

Mechanisms of Bile Formation and Cholestasis: Clinical Significance of Recent Experimental Work

dc.contributor.authorMoseley, Richard H.en_US
dc.date.accessioned2010-06-01T19:20:15Z
dc.date.available2010-06-01T19:20:15Z
dc.date.issued1986-09en_US
dc.identifier.citationMoseley, Richard H. (1986). "Mechanisms of Bile Formation and Cholestasis: Clinical Significance of Recent Experimental Work." The American Journal of Gastroenterology 81(9): 731-735. <http://hdl.handle.net/2027.42/72481>en_US
dc.identifier.issn0002-9270en_US
dc.identifier.issn1572-0241en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72481
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=3529935&dopt=citationen_US
dc.format.extent620892 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1986 by Am. Coll. of Gastroenterologyen_US
dc.titleMechanisms of Bile Formation and Cholestasis: Clinical Significance of Recent Experimental Worken_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDivision of Gastroenterology, Department of Internal Medicine, The University of Michigan School of Medicine and the Veterans Administration Medical Center, Ann Arbor, Michiganen_US
dc.identifier.pmid3529935en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72481/1/j.1572-0241.1986.tb01599.x.pdf
dc.identifier.doi10.1111/j.1572-0241.1986.tb01599.xen_US
dc.identifier.sourceThe American Journal of Gastroenterologyen_US
dc.identifier.citedreferenceBlitzer BL, Boyer JL. Cellular mechanisms of bile formation. Gastroenterology 1982; 82: 346 – 57.en_US
dc.identifier.citedreferenceGraf J. Canalicular bile salt-dependent bile formation: concepts and clues from electrolyte transport in rat liver. Am J Physiol 1983; 244: G233 – 46.en_US
dc.identifier.citedreferenceScharschmidt BF, van Dyke RW. Mechanisms of hepatic electrolyte transport. Gastroenterology 1983; 85: 1199 – 214.en_US
dc.identifier.citedreferenceKlaasen CD, Watkins JB. Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharmacol Rev 1984; 36: l – 67.en_US
dc.identifier.citedreferenceStrange RC. Hepatic bile flow. Physiol Rev 1984; 64: 1055 – 102.en_US
dc.identifier.citedreferenceMoseley RH, Boyer JL. Mechanisms of electrolyte transport in the liver and their functional significance. Semin Liver Dis 1985; 5: 122 – 35.en_US
dc.identifier.citedreferenceMeier PJ, Meier-Abt AS, Barrett C, et al. Mechanisms of tauro-cholate transport in canalicular and basolateral rat liver plasma membrane vesicles: evidence for an electrogenic canalicular organic anion carrier. J Biol Chem 1984; 259: 10614 – 22.en_US
dc.identifier.citedreferenceInoue M, Kinne R, Tran T, et al. Taurocholate transport by rat liver canalicular membrane vesicles: evidence for the presence of a Na + -independent transport system. J Clin Invest 1984; 73: 659 – 63.en_US
dc.identifier.citedreferenceBlitzer BL, Boyer JL. Cytochemical localization of Na + K + -ATPase in the rat hepatocyte. J Clin Invest 1978; 62: 1104 – 8.en_US
dc.identifier.citedreferenceAnwer MS, Hegner D. Effects of Na + on bile acid uptake by isolated rat hepatocytes. Hoppe-Seylers Z Physiol Chem 1978; 359: 181 – 92.en_US
dc.identifier.citedreferenceAccatino L, Simon FR. Identification and characterization of a bile acid receptor in isolated liver surface membranes. J Clin Invest 1976; 57: 498 – 508.en_US
dc.identifier.citedreferencevon Dippe P, Drain P, Levy D. Synthesis and transport characteristics of photoaffinity probes for the hepatocyte bile acid transport system. J Biol Chem 1983; 258: 8890 – 5.en_US
dc.identifier.citedreferencevon Dippe P, Levy D. Characterization of the bile acid transport system in normal and transformed hepatocytes: photoaffinity labeling of the taurocholate carrier protein. J Biol Chem 1983; 258: 8896 – 901.en_US
dc.identifier.citedreferenceLevy D, von Dippe P. Reconstitution of the bile acid transport system derived from hepatocyte sinusoidal membranes. Hepatology 1983; 3: 837 ( abstr ).en_US
dc.identifier.citedreferenceWieland T. The toxic peptides from Amanita mushrooms. Int J Pept Protein Res 1983; 22: 257 – 76.en_US
dc.identifier.citedreferenceWieland T, Nassal M, Kramer W, et al: Identity of hepatic membrane transport systems for bile salts, phalloidin, and anta-manide by photoaffinity labeling. Proc Natl Acad Sci USA 1984; 81: 5232 – 6.en_US
dc.identifier.citedreferenceFaulstich H, Wieland T, Walli A, et al. Antanamide protects hepatocytes from phalloidin destruction. Hoppe Seylers Z Physiol Chem 1974; 355: 1162 – 3.en_US
dc.identifier.citedreferenceKaplowitz N. Physiological significance of glutathione S-transferases. Am J Physiol 1980; 239: G439 – 44.en_US
dc.identifier.citedreferenceSugiyama Y, Yamada T, Kaplowitz N. Newly identified bile acid binders in rat liver cytosol: purification and comparison with glutathione S-transferases. J Biol Chem 1983; 258: 3602 – 7.en_US
dc.identifier.citedreferenceRenston RH, Jones AL, Christiansen WD, et al. Evidence for a vesicular transport mechanism in hepatocytes for biliary secretion of immunoglobulin A. Science 1980; 208: 1276 – 8.en_US
dc.identifier.citedreferenceJones AL, Schmucker DL, Mooney JS, et al. Alterations in hepatic pericanalicular cytoplasm during enhanced bile secretory activity. Lab Invest 1979; 40: 512 – 17.en_US
dc.identifier.citedreferenceSimion FA, Fleischer B, Fleischer S. Two distinct mechanisms for taurocholate uptake in subcellular fractions from rat liver. J Biol Chem 1984; 259: 10814 – 22.en_US
dc.identifier.citedreferenceGlasinovic JC, Dumont M, Duval M, et al. Hepatocellular uptake of taurocholate in the dog. J Clin Invest 1975; 55: 419 – 26.en_US
dc.identifier.citedreferenceReichen J, Paumgartner G. Kinetics of taurocholate uptake by the perfused rat liver. Gastroenterology 1975; 68: 132 – 6.en_US
dc.identifier.citedreferenceValencia-Mayoral P, Weber J, Cutz E, et al. Possible defect in the bile secretory apparatus in arteriohepatic dysplasia (Alagille's syndrome); a review with observations on the ultrastructure of liver. Hepatology 1984; 4: 691 – 8.en_US
dc.identifier.citedreferenceHardison WGM, Wood GA. Importance of bicarbonate in bile salt independent fraction of bile flow. Am J Physiol 1978; 235: E158 – 64.en_US
dc.identifier.citedreferencevan Dyke RW, Stephens JE, Scharschmidt BF. Effect of ion substitution in bile acid-dependent and bile acid-independent bile formation by the isolated perfused rat liver. J Clin Invest 1982; 70: 505 – 17.en_US
dc.identifier.citedreferenceAnwer MS, Hegner D. Role of inorganic electrolytes in bile acid-independent canalicular bile formation. Am J Physiol 1983; 244: G 116 – 24.en_US
dc.identifier.citedreferenceMeier PJ, Knickelbein R, Moseley RH, et al. Evidence for carrier–mediated chloride: bicarbonate exchange in canalicular rat liver plasma membrane vesicles. J Clin Invest 1985; 75: 1256 – 63.en_US
dc.identifier.citedreferenceMoseley RH, Meier PJ, Aronson PS, et al. Na-H exchange in rat liver basolateral but not canalicular plasma membrane vesicles. Am J Physiol 1986; 250: G35 – 43.en_US
dc.identifier.citedreferenceArias IM, Forgac M. The sinusoidal domain of the plasma membrane of rat hepatocytes contains an amiloride-sensitive Na + H + antiport. J Biol Chem 1984; 259: 5406 – 8.en_US
dc.identifier.citedreferenceArias IM, Adachi Y, Tran T. Ethinyl estradiol cholestasis: a disease of the sinusoidal domain of the hepatocyte plasma membrane. Hepatology 1983; 3: 872 ( abstr ).en_US
dc.identifier.citedreferenceMiner PB, Sutherland E, Simon FR. Regulation of hepatocyte sodium plus potassium–activated adenosine triphosphate activity by glucocorticoids in the rat. Gastroenterology 1980; 79: 212 – 21.en_US
dc.identifier.citedreferenceLayden TJ, Boyer JL. The effect of thyroid hormone on bile salt-independent bile flow and Na +, K + -ATPase activity in liver plasma membranes enriched in bile canaliculi. J Clin Invest 1976; 57: 1009 – 18.en_US
dc.identifier.citedreferenceKinsella J, Cujdik T, Sacktor B. Na + -H + exchange activity in renal brush border membrane vesicles in response to metabolic acidosis: the role of glucocorticoids. Proc Natl Acad Sci 1984; 81: 630 – 4.en_US
dc.identifier.citedreferenceKinsella JL, Sacktor B. Thyroid hormones increase Na + -H + exchange activity in renal brush border membranes. Proc Natl Acad Sci USA 1985; 82: 3606 – 10.en_US
dc.identifier.citedreferenceDumont M, Erlinger S, Uchman S. Hypercholeresis induced by ursodeoxycholic acid and 7-ketolithocholic acid in the rat: possible role of bicarbonate transport. Gastroenterology 1980; 79: 82 – 9.en_US
dc.identifier.citedreferenceMoseley RH, Ballatori N, Smith DJ, et al. Ursodeoxycholate stimulates Na + :H + exchange in rat liver basolateral membrane vesicles. Hepatology 1985; 5: 1017 ( abstr ).en_US
dc.identifier.citedreferenceLake JR, van Dyke RW, Scharschmidt BF. Ursodeoxycholic acid (UDCA)-stimulated choleresis and bicarbonate secretion are sodium-dependent processes. Gastroenterology 1985; 88: 1673 ( abstr ).en_US
dc.identifier.citedreferenceGarcia-Marin JJ, Dumont M, Corbie M, et al. Effect of acid-base balance and acetazolamide on ursodeoxycholate-induced biliary bicarbonate secretion. Am J Physiol 1985; 248: G20 – 7.en_US
dc.identifier.citedreferenceScharschmidt BF. Bile formation and cholestasis, metabolism' and enterohepatic circulation of bile acids, and gallstone formation. In: Zakim D, Boyer TD. eds. Hepatology: a textbook of liver disease. Philadelphia: WB Saunders Co, 1982: 297 – 351.en_US
dc.identifier.citedreferencePhilips MJ, Oshio C, Miyairi M, Katz H, Smith CR. A study of bile canalicular contractions in isolated hepatocytes. Hepatology 1982; 2: 763 – 8.en_US
dc.identifier.citedreferenceSmith CR, Oshio C, Miyairi M, et al. Coordination of the contractile activity of bile canaliculi: evidence from spontaneous contractions in vitro. Lab Invest 1985; 53: 270 – 4.en_US
dc.identifier.citedreferenceWatanabe S, Miyairi M, Oshio C, et al. Phalloidin alters bile canalicular contractility in primary monolayer cultures of rat liver. Gastroenterology 1983; 85: 245 – 53.en_US
dc.identifier.citedreferenceWatanabe S, Philips MJ. Ca 2+ causes active contraction of bile canaliculi: direct evidence from microinjection studies. Proc Natl Acad Sci USA 1984; 81: 6164 – 8.en_US
dc.identifier.citedreferenceWatanabe S, Smith CR, Philips MJ. Coordination of the contractile activity of bile canaliculi: evidence from calcium microinjection of triplet hepatocytes. Lab Invest 1985; 53: 275 – 9.en_US
dc.identifier.citedreferenceMiyairi M, Oshio C, Watanabe S, et al. Taurocholate accelerates bile canalicular contractions in isolated rat hepatocytes. Gastroenterology 1984; 87: 788 – 92.en_US
dc.identifier.citedreferencePhilips MJ, Oda M, Funatsu K. Evidence for microfilament involvement in norethandrolone-induced cholestasis. Am J Pathol 1978; 93: 729 – 44.en_US
dc.identifier.citedreferenceIshak KG, Nelson SI. Hepatic injury associated with the phenothiazines. Arch Pathol 1972; 93: 283 – 304.en_US
dc.identifier.citedreferenceBartholomew LG, Cain JC, Frazier SH, et al. Effects of chlorpromazine on the liver. Gastroenterology 1958; 34: 1096 – 107.en_US
dc.identifier.citedreferenceElias E, Boyer JL. Chlorpromazine and its metabolites alter polymerization and gelation of actin. Science 1979; 206: 1404 – 6.en_US
dc.identifier.citedreferenceHraban Z, Tavoloni N, Reed JS, et al. Ultrastructural changes during cholestasis induced by chlorpromazine in the isolated perfused rat liver. Virchows Arch B Cell Pathol 1978; 26: 289 – 305.en_US
dc.identifier.citedreferenceFukumoto Y, Okita K, Ando K, et al. Influence of colchicine on bile secretion. Hepatology 1982; 2: 160 ( abstr ).en_US
dc.identifier.citedreferenceDubin M, Maurice M, Feldman G, et al. Influence of colchicine and phalloidin on bile secretion and hepatic ultrastructure in the rat: possible interaction between microtubules and microfilaments. Gastroenterology 1980; 79: 646 – 54.en_US
dc.identifier.citedreferenceTaggart HM, Alderdice JM. Fatal cholestatic jaundice in elderly patients taking benoxaprofen. Br Med J 1982; 284: 1372.en_US
dc.identifier.citedreferenceDuthie A, Glanfield P, Nicholls A, et al. Fatal cholestatic jaundice in elderly patients taking benoxaprofen. Br Med J 1982; 285: 62.en_US
dc.identifier.citedreferenceRene E, Danzinger RG, Hofmann AF, et al. Pharmacologic effect of somatostatin on bile formation in the dog: enhanced ductular reabsorption as the major mechanism of anticholeresis. Gastroenterology 1983; 84: 120 – 9.en_US
dc.identifier.citedreferenceHanks FB, Kortz WJ, Andersen DK, et al. Somatostatin suppression of canine fasting bile secretion. Gastroenterology 1983; 84: 130 – 7.en_US
dc.identifier.citedreferenceDavis RA, Kem F, Showalter R, et al. Alterations of hepatic Na +, K + -ATPase and bile flow by estrogen: effects on liver surface membrane lipid structure and function. Proc Natl Acad Sci USA 1978; 75: 4130 – 4.en_US
dc.identifier.citedreferenceSimon FR, Gonzalez M, Sutherland E, et al. Reversal of ethinyl estradiol-induced bile secretory failure with Triton WR-1339. J Clin Invest 1980; 65: 851 – 60.en_US
dc.identifier.citedreferenceKeefe EB, Blankenship NM, Scharschmidt BF. Alteration of rat liver plasma membrane fluidity and ATPase activity by chlorpromazine hydrochloride and its metabolites. Gastroenterology 1980; 79: 222 – 31.en_US
dc.identifier.citedreferenceKeefe EB, Scharschmidt BF, Blankenship NM, et al. Studies of relationships among bile flow, liver plasma membrane NaK-ATPase, and membrane microviscosity in the rat. J Clin Invest 1979; 64: 1590 – 8.en_US
dc.identifier.citedreferenceBoelsterli UA, Rakhit G, Balazs T. Modulation by S-adenosyl-L-methionine of hepatic (Na + + K + )-ATPase, membrane fluidity, and bile flow in rats with ethinyl estradiol-induced cholestasis. Hepatology 1983; 3: 12 – 17.en_US
dc.identifier.citedreferenceMiner PB, Sneller M, Crawford SS. Spironolactone-and canren-one-induced changes in hepatic (Na +, K + )ATPase activity, surface membrane cholesterol and phospholipid, and fluorescence polarization in the rat. Hepatology 1983; 3: 481 – 8.en_US
dc.identifier.citedreferenceZsigmond G, Solymoss B. Increased canalicular bile production induced by pregnenolone-16a-carbonitrile, spironolactone and cortisol in rats. Proc Exp Biol Med 1974; 145: 631 – 5.en_US
dc.identifier.citedreferenceDanielsson H. Mechanisms of bile acid biosynthesis. In: Nair PP, Kritchevsky D eds. The bile acids, 2. Physiology and metabolism. New York: Plenum Press, 1973: 1 – 32.en_US
dc.identifier.citedreferenceFouin-Fortunet H, Le Quemec L, Erlinger S, et al. Hepatic alterations during total parenteral nutrition in patients with inflammatory bowel disease: a possible consequence of lithocholate toxicity. Gastroenterology 1982; 82: 932 – 7.en_US
dc.identifier.citedreferenceCapron JP, Gineston JL, Herve MA, et al. Metronidazole in prevention of cholestasis associated with total parenteral nutrition. Lancet 1983; 1: 446 – 7.en_US
dc.identifier.citedreferenceWilliams CN, Kaye R, Baker L, et al. Progressive familial cholestatic cirrhosis and bile acid metabolism. J Pediatr 1972; 81: 493 – 500.en_US
dc.identifier.citedreferenceLinarelli LG, Williams CN, Phillips MJ. Byler's disease: fatal intrahepatic cholestasis. J Pediatr 1972; 81: 484 – 92.en_US
dc.identifier.citedreferenceKakis G, Yousef IM. Pathogenesis of lithocholate-and taurolith-ocholate-induced intrahepatic cholestasis in rats. Gastroenterology 1978; 75: 595 – 607.en_US
dc.identifier.citedreferenceKakis G, Phillips MJ, Yousef IM. The respective roles of membrane cholesterol and of sodium potassium adenosine triphosphatase in the pathogenesis of lithocholate-induced cholestasis. Lab Invest 1980; 43: 73 – 81.en_US
dc.identifier.citedreferenceOelberg DG, Dubinsky WP, Adcock EW, et al. Calcum binding by lithocholic acid derivatives. Am J Physiol 1984; 247: G112 – 15.en_US
dc.identifier.citedreferenceLittle JM, Cage K, Oelberg DG, et al. Pathogenesis of the pruritus of cholestasis: an initial hypothesis. Hepatology 1985; 5: 1005 ( abstr ).en_US
dc.identifier.citedreferenceDahms BB, Halpin TC. Serial liver biopsies in parenteral nutrition-associated cholestasis of early infancy. Gastroenterology 1981; 81: 136 – 44.en_US
dc.identifier.citedreferencePerea A, Tuchweber B, Roy CC, et al. Decreased bile acid independent flow as a possible cause of amino acid-induced cholestasis. Gastroenterology 1982; 82: 1258 ( abstr ).en_US
dc.identifier.citedreferenceBlitzer BL, Ratoosh SL, Donovan CB. Amino acid inhibition of bile acid uptake by isolated rat hepatocytes: relationship to dissipation of transmembrane Na + gradient. Am J Physiol 1983; 245: G399 – 403.en_US
dc.identifier.citedreferenceBlitzer BL, Bueler RL. Amino acid inhibition of bile acid uptake by basolateral liver plasma membrane (LPM) vesicles. Gastroenterology 1983; 84: 1364 ( abstr ).en_US
dc.identifier.citedreferenceUtili R, Abemathy CO, Zimmerman HJ. Cholestatic effects of Escherichia coli endotoxin on the isolated perfused rat liver. Gastroenterology 1976; 70: 248 – 53.en_US
dc.identifier.citedreferenceUtili R, Abernathy CO, Zimmerman HJ. Inhibition of Na +, K + -adenosine triphosphatase by endotox In: a possible mechanism for endotoxin-induced cholestasis. J Infect Dis 1977; 136: 583 – 7.en_US
dc.identifier.citedreferenceMiller DJ, Keeton GR, Webber BL, et al. Jaundice in severe bacterial infection. Gastroenterology 1986; 71: 94 – 7.en_US
dc.identifier.citedreferenceRose HD, Lentino JR, Mavrelis PG, et al. Jaundice associated with nonhepatic Staphylococcus aureus infection: does teichoic acid have a role in pathogenesis? Dig Dis Sci 1982; 27: 1046 – 50.en_US
dc.identifier.citedreferenceLarrson-Cohn U, Stenram U. Liver ultrastructure and function in icteric and non-icteric women using oral contraceptives. Acta Med Scand 1967; 181: 257 – 64.en_US
dc.identifier.citedreferenceOrellana-Alcalde JM, Dominguez JP. Jaundice and oral contraceptive drugs. Lancet 1966; 2: 1278 – 80.en_US
dc.identifier.citedreferenceCohen L, Lewis C, Arias IM. Pregnancy, oral contraceptives, and chronic familial jaundice with predominantly conjugated hyper-bilirubinemia (Dubin-Johnson syndrome). Gastroenterology 1972; 62: 1182 – 90.en_US
dc.identifier.citedreferenceReyes H, Ribalta J, Gonzalez MC, et al. Sulfobromophthalein clearance tests before and after ethinyl estradiol administration, in women and men with family history of intrahepatic cholestasis of pregnancy. Gastroenterology 1981; 81: 226 – 31.en_US
dc.identifier.citedreferenceHolzbach RT. Jaundice in pregnancy. Am J Med 1976; 61: 367 – 76.en_US
dc.identifier.citedreferenceReyes H. The enigma of intrahepatic cholestasis of pregnancy: lessons from Chile. Hepatology 1982; 2: 87 – 96.en_US
dc.identifier.citedreferenceStramentinoli G, Di Padova C, Gualano M, et al. Ethynylestradiol-induced impairment of bile secretion in the rat: protective effect of S-adenosyl-L-methionine and its implication in estrogen metabolism. Gastroenterology 1981; 80: 154 – 8.en_US
dc.identifier.citedreferenceStramentinoli G, Gualano M, Rovagnati P, et al. Influence of S-adenosyl-L-methionine on irreversible binding of ethynylestradiol to rat liver microsomes, and its implication in bile secretion. Biochem Pharmacol 1979; 28: 981 – 4.en_US
dc.identifier.citedreferenceFreeza M, Pozzato G, Chiesa L, et al. Reversal of intrahepatic cholestasis of pregnancy in women after high dose S-adenosyl-L-methionine administration. Hepatology 1984; 4: 274 – 8.en_US
dc.identifier.citedreferenceSchreiber AJ, Warren G, Sutherland E, et al. Enhancement of taurocholate secretory maximum: S-adenosyl methionine (SAM)-induced cytoprotection. Clin Res 1983; 31: 86A ( abstr ).en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.