Show simple item record

LplA1-dependent utilization of host lipoyl peptides enables Listeria cytosolic growth and virulence

dc.contributor.authorKeeney, Kristie Milleren_US
dc.contributor.authorStuckey, Jeanne A.en_US
dc.contributor.authorO'Riordan, Mary X. D.en_US
dc.date.accessioned2010-06-01T19:23:12Z
dc.date.available2010-06-01T19:23:12Z
dc.date.issued2007-11en_US
dc.identifier.citationKeeney, Kristie M.; Stuckey, Jeanne A.; O'Riordan, Mary X. D. (2007). "LplA1-dependent utilization of host lipoyl peptides enables Listeria cytosolic growth and virulence." Molecular Microbiology 66(3): 758-770. <http://hdl.handle.net/2027.42/72528>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72528
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17908209&dopt=citationen_US
dc.description.abstractThe bacterial pathogen Listeria monocytogenes replicates within the cytosol of mammalian cells. Mechanisms by which the bacterium exploits the host cytosolic environment for essential nutrients are poorly defined. L. monocytogenes is a lipoate auxotroph and must scavenge this critical cofactor, using lipoate ligases to facilitate attachment of the lipoyl moiety to metabolic enzyme complexes. Although the L. monocytogenes genome encodes two putative lipoate ligases, LplA1 and LplA2, intracellular replication and virulence require only LplA1. Here we show that LplA1 enables utilization of host-derived lipoyl peptides by L. monocytogenes . LplA1 is dispensable for growth in the presence of free lipoate, but necessary for growth on low concentrations of mammalian lipoyl peptides. Furthermore, we demonstrate that the intracellular growth defect of the δ lplA1 mutant is rescued by addition of exogenous lipoic acid to host cells, suggesting that L. monocytogenes dependence on LplA1 is dictated by limiting concentrations of available host lipoyl substrates. Thus, the ability of L. monocytogenes and other intracellular pathogens to efficiently use host lipoyl peptides as a source of lipoate may be a requisite adaptation for life within the mammalian cell.en_US
dc.format.extent45632715 bytes
dc.format.extent629275 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2007 The Authors; Journal compilation © 2007 Blackwell Publishing Ltden_US
dc.titleLplA1-dependent utilization of host lipoyl peptides enables Listeria cytosolic growth and virulenceen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumLife Sciences Institute, University of Michigan Medical School, 1150 W. Medical Center Drive, 5641 Medical Sciences II, Ann Arbor, MI 48109-0620, USA.en_US
dc.contributor.affiliationotherDepartments of Microbiology and Immunology anden_US
dc.contributor.affiliationotherBiological Chemistry, anden_US
dc.identifier.pmid17908209en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72528/1/MMI+5956+Supp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72528/2/j.1365-2958.2007.05956.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2007.05956.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAkiba, S., Matsugo, S., Packer, L., and Konishi, T. ( 1998 ) Assay of protein-bound lipoic acid in tissues by a new enzymatic method. Anal Biochem 258: 299 – 304.en_US
dc.identifier.citedreferenceAllary, M., Lu, J.Z., Zhu, L., and Prigge, S.T. ( 2007 ) Scavenging of the cofactor lipoate is essential for the survival of the malaria parasite Plasmodium falciparum. Mol Microbiol 63: 1331 – 1344.en_US
dc.identifier.citedreferenceAuerbuch, V., Lenz, L.L., and Portnoy, D.A. ( 2001 ) Development of a competitive index assay to evaluate the virulence of Listeria monocytogenes actA mutants during primary and secondary infection of mice. Infect Immun 69: 5953 – 5957.en_US
dc.identifier.citedreferenceBaker, H., Deangelis, B., Baker, E.R., and Hutner, S.H. ( 1998 ) A practical assay of lipoate in biologic fluids and liver in health and disease. Free Radic Biol Med 25: 473 – 479.en_US
dc.identifier.citedreferenceBaker, N.A., Sept, D., Joseph, S., Holst, M.J., and McCammon, J.A. ( 2001 ) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98: 10037 – 10041.en_US
dc.identifier.citedreferenceBast, A., and Haenen, G.R. ( 2003 ) Lipoic acid: a multifunctional antioxidant. Biofactors 17: 207 – 213.en_US
dc.identifier.citedreferenceBouwer, H.G., Nelson, C.S., Gibbins, B.L., Portnoy, D.A., and Hinrichs, D.J. ( 1992 ) Listeriolysin O is a target of the immune response to Listeria monocytogenes. J Exp Med 175: 1467 – 1471.en_US
dc.identifier.citedreferenceBrunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., et al. ( 1998 ) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54: 905 – 921.en_US
dc.identifier.citedreferenceBryk, R., Lima, C.D., Erdjument-Bromage, H., Tempst, P., and Nathan, C. ( 2002 ) Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295: 1073 – 1077.en_US
dc.identifier.citedreferenceChico-Calero, I., Suarez, M., Gonzalez-Zorn, B., Scortti, M., Slaghuis, J., Goebel, W., et al. ( 2002 ) Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc Natl Acad Sci USA 99: 431 – 436.en_US
dc.identifier.citedreferenceCrawford, M.J., Thomsen-Zieger, N., Ray, M., Schachtner, J., Roos, D.S., and Seeber, F. ( 2006 ) Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. EMBO J 25: 3214 – 3222.en_US
dc.identifier.citedreferenceDeLano, W.L. ( 2002 ) The PyMOL Molecular Graphics System on World Wide Web. [WWW] URL http://pymol.sourceforge.neten_US
dc.identifier.citedreferenceFreitag, N.E., Rong, L., and Portnoy, D.A. ( 1993 ) Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect Immun 61: 2537 – 2544.en_US
dc.identifier.citedreferenceFujiwara, K., Toma, S., Okamura-Ikeda, K., Motokawa, Y., Nakagawa, A., and Taniguchi, H. ( 2005 ) Crystal structure of lipoate-protein ligase A from Escherichia coli. Determination of the lipoic acid-binding site. J Biol Chem 280: 33645 – 33651.en_US
dc.identifier.citedreferenceGlaser, P., Frangeul, L., Buchrieser, C., Rusniok, C., Amend, A., Baquero, F., et al. ( 2001 ) Comparative genomics of Listeria species. Science 294: 849 – 852.en_US
dc.identifier.citedreferenceGoetz, M., Bubert, A., Wang, G., Chico-Calero, I., Vazquez-Boland, J.A., Beck, M., et al. ( 2001 ) Microinjection and growth of bacteria in the cytosol of mammalian host cells. Proc Natl Acad Sci USA 98: 12221 – 12226.en_US
dc.identifier.citedreferenceHodgson, D.A. ( 2000 ) Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol Microbiol 35: 312 – 323.en_US
dc.identifier.citedreferenceHorton, R.M., Cai, Z.L., Ho, S.N., and Pease, L.R. ( 1990 ) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8: 528 – 535.en_US
dc.identifier.citedreferenceJiang, Y., and Cronan, J.E. ( 2005 ) Expression cloning and demonstration of Enterococcus faecalis lipoamidase (pyruvate dehydrogenase inactivase) as a Ser-Ser-Lys triad amidohydrolase. J Biol Chem 280: 2244 – 2256.en_US
dc.identifier.citedreferenceJones, T.A., Zou, J.Y., Cowan, S.W., and Kjeldgaard, M. ( 1991 ) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47: 110 – 119.en_US
dc.identifier.citedreferenceJordan, S.W., and Cronan, J.E., Jr ( 1997 ) A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria. J Biol Chem 272: 17903 – 17906.en_US
dc.identifier.citedreferenceKim, D.J., Kim, K.H., Lee, H.H., Lee, S.J., Ha, J.Y., Yoon, H.J., and Suh, S.W. ( 2005 ) Crystal structure of lipoate-protein ligase A bound with the activated intermediate: insights into interaction with lipoyl domains. J Biol Chem 280: 38081 – 38089.en_US
dc.identifier.citedreferenceKonishi, T., Handelman, G., Matsugo, S., Mathur, V.V., Tritschler, H.J., and Packer, L. ( 1996 ) Amplified determination of lipoyl groups by lipoamide dehydrogenase in the presence of oxidized glutathione. Biochem Mol Biol Int 38: 1155 – 1161.en_US
dc.identifier.citedreferenceMa, Q., Zhao, X., Nasser Eddine, A., Geerlof, A., Li, X., Cronan, J.E., et al. ( 2006 ) The Mycobacterium tuberculosis LipB enzyme functions as a cysteine/lysine dyad acyltransferase. Proc Natl Acad Sci USA 103: 8662 – 8667.en_US
dc.identifier.citedreferenceMargineantu, D.H., Brown, R.M., Brown, G.K., Marcus, A.H., and Capaldi, R.A. ( 2002 ) Heterogeneous distribution of pyruvate dehydrogenase in the matrix of mitochondria. Mitochondrion 1: 327 – 338.en_US
dc.identifier.citedreferenceMarquis, H., Bouwer, H.G., Hinrichs, D.J., and Portnoy, D.A. ( 1993 ) Intracytoplasmic growth and virulence of Listeria monocytogenes auxotrophic mutants. Infect Immun 61: 3756 – 3760.en_US
dc.identifier.citedreferenceMorris, T.W., Reed, K.E., and Cronan, J.E., Jr ( 1994 ) Identification of the gene encoding lipoate-protein ligase A of Escherichia coli. Molecular cloning and characterization of the lplA gene and gene product. J Biol Chem 269: 16091 – 16100.en_US
dc.identifier.citedreferenceMorris, T.W., Reed, K.E., and Cronan, J.E., Jr ( 1995 ) Lipoic acid metabolism in Escherichia coli: the lplA and lipB genes define redundant pathways for ligation of lipoyl groups to apoprotein. J Bacteriol 177: 1 – 10.en_US
dc.identifier.citedreferenceO'Riordan, M., Moors, M.A., and Portnoy, D.A. ( 2003 ) Listeria intracellular growth and virulence require host-derived lipoic acid. Science 302: 462 – 464.en_US
dc.identifier.citedreferencePerham, R.N. ( 2000 ) Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu Rev Biochem 69: 961 – 1004.en_US
dc.identifier.citedreferencePhan-Thanh, L., and Gormon, T. ( 1997 ) A chemically defined minimal medium for the optimal culture of Listeria. Int J Food Microbiol 35: 91 – 95.en_US
dc.identifier.citedreferencePodda, M., Tritschler, H.J., Ulrich, H., and Packer, L. ( 1994 ) Alpha-lipoic acid supplementation prevents symptoms of vitamin E deficiency. Biochem Biophys Res Commun 204: 98 – 104.en_US
dc.identifier.citedreferencePortnoy, D.A., Tweten, R.K., Kehoe, M., and Bielecki, J. ( 1992 ) Capacity of listeriolysin O, streptolysin O, and perfringolysin O to mediate growth of Bacillus subtilis within mammalian cells. Infect Immun 60: 2710 – 2717.en_US
dc.identifier.citedreferencePortnoy, D.A., Auerbuch, V., and Glomski, I.J. ( 2002 ) The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J Cell Biol 158: 409 – 414.en_US
dc.identifier.citedreferenceReed, L.J., De, B.B., Gunsalus, I.C., and Hornberger, C.S., Jr ( 1951 ) Crystalline alpha-lipoic acid; a catalytic agent associated with pyruvate dehydrogenase. Science 114: 93 – 94.en_US
dc.identifier.citedreferenceSkaar, E.P., Humayun, M., Bae, T., DeBord, K.L., and Schneewind, O. ( 2004 ) Iron-source preference of Staphylococcus aureus infections. Science 305: 1626 – 1628.en_US
dc.identifier.citedreferenceSmith, K., and Youngman, P. ( 1992 ) Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74: 705 – 711.en_US
dc.identifier.citedreferenceStein, A., and Firshein, W. ( 2000 ) Probable identification of a membrane-associated repressor of Bacillus subtilis DNA replication as the E2 subunit of the pyruvate dehydrogenase complex. J Bacteriol 182: 2119 – 2124.en_US
dc.identifier.citedreferenceStritzker, J., Janda, J., Schoen, C., Taupp, M., Pilgrim, S., Gentschev, I., et al. ( 2004 ) Growth, virulence, and immunogenicity of Listeria monocytogenes aro mutants. Infect Immun 72: 5622 – 5629.en_US
dc.identifier.citedreferenceTsai, H.N., and Hodgson, D.A. ( 2003 ) Development of a synthetic minimal medium for Listeria monocytogenes. Appl Environ Microbiol 69: 6943 – 6945.en_US
dc.identifier.citedreferenceWada, M., Yasuno, R., Jordan, S.W., Cronan, J.E., Jr and Wada, H. ( 2001 ) Lipoic acid metabolism in Arabidopsis thaliana: cloning and characterization of a cDNA encoding lipoyltransferase. Plant Cell Physiol 42: 650 – 656.en_US
dc.identifier.citedreferenceWelshimer, H.J. ( 1963 ) Vitamin requirements of Listeria monocytogenes. J Bacteriol 85: 1156 – 1159.en_US
dc.identifier.citedreferenceWrenger, C., and Muller, S. ( 2004 ) The human malaria parasite Plasmodium falciparum has distinct organelle-specific lipoylation pathways. Mol Microbiol 53: 103 – 113.en_US
dc.identifier.citedreferenceZhao, X., Miller, J.R., Jiang, Y., Marletta, M.A., and Cronan, J.E. ( 2003 ) Assembly of the covalent linkage between lipoic acid and its cognate enzymes. Chem Biol 10: 1293 – 1302.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.