Show simple item record

Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine

dc.contributor.authorTindell, Amy J.en_US
dc.contributor.authorBerridge, Kent C.en_US
dc.contributor.authorZhang, Junen_US
dc.contributor.authorPeciña, Susanaen_US
dc.contributor.authorAldridge, J. Wayneen_US
dc.date.accessioned2010-06-01T19:30:32Z
dc.date.available2010-06-01T19:30:32Z
dc.date.issued2005-11en_US
dc.identifier.citationTindell, Amy J.; Berridge, Kent C.; Zhang, Jun; PeciÑa, Susana; Aldridge, J. Wayne (2005). "Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine." European Journal of Neuroscience 22(10): 2617-2634. <http://hdl.handle.net/2027.42/72647>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72647
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16307604&dopt=citationen_US
dc.description.abstractNeurons in ventral pallidum fire to reward and its predictive cues. We tested mesolimbic activation effects on neural reward coding. Rats learned that a Pavlovian conditioned stimulus (CS+1 tone) predicted a second conditioned stimulus (CS+2 feeder click) followed by an unconditioned stimulus (UCS sucrose reward). Some rats were sensitized to amphetamine after training. Electrophysiological activity of ventral pallidal neurons to stimuli was later recorded under the influence of vehicle or acute amphetamine injection. Both sensitization and acute amphetamine increased ventral pallidum firing at CS+2 (population code and rate code). There were no changes at CS+1 and minimal changes to UCS. With a new ‘ Profile Analysis ’, we show that mesolimbic activation by sensitization/amphetamine incrementally shifted neuronal firing profiles away from prediction signal coding (maximal at CS+1) and toward incentive coding (maximal at CS+2), without changing hedonic impact coding (maximal at UCS). This pattern suggests mesolimbic activation specifically amplifies a motivational transform of CS+ predictive information into incentive salience coded by ventral pallidal neurons. Our results support incentive-sensitization predictions and suggest why cues temporally proximal to drug presentation may precipitate cue-triggered relapse in human addicts.en_US
dc.format.extent868820 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 Federation of European Neuroscience Societiesen_US
dc.subject.otherAddictionen_US
dc.subject.otherAmphetamine Sensitizationen_US
dc.subject.otherIncentive Salienceen_US
dc.subject.otherNeural Codingen_US
dc.subject.otherSingle-unit Activityen_US
dc.subject.otherSprague–Dawley Raten_US
dc.titleVentral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamineen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Psychology, University of Michigan, USAen_US
dc.contributor.affiliationumDepartment of Neurology, University of Michigan Medical School, 1150 West Medical Center Drive, Medical Science Bldg I, Room 3317, Ann Arbor, MI 48109-0607, USAen_US
dc.identifier.pmid16307604en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72647/1/j.1460-9568.2005.04411.x.pdf
dc.identifier.doi10.1111/j.1460-9568.2005.04411.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceAldridge, J. W. & Berridge, K. C. ( 1998 ) Coding of serial order by neostriatal neurons: a ‘natural action’ approach to movement sequence. J. Neurosci., 18, 2777 – 2787.en_US
dc.identifier.citedreferenceBalleine, B. W., Garner, C., Gonzalez, F. & Dickinson, A. ( 1995 ) Motivational control of heterogeneous instrumental chains. J. Exp. Psych.: Anim. Behav. Proc., 21, 203 – 217.en_US
dc.identifier.citedreferenceBerke, J. D. & Hyman, S. E. ( 2000 ) Addiction, dopamine, and the molecular mechanisms of memory. Neuron, 25, 515 – 532.en_US
dc.identifier.citedreferenceBerridge, K. C. ( 2000 ) Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci. Biobehav. Rev., 24, 173 – 198.en_US
dc.identifier.citedreferenceBerridge, K. C. & Robinson, T. E. ( 1998 ) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Rev., 28, 309 – 369.en_US
dc.identifier.citedreferenceBerridge, K. C. & Valenstein, E. S. ( 1991 ) What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus? Behav. Neurosci., 105, 3 – 14.en_US
dc.identifier.citedreferenceCorbit, L. H. & Balleine, B. W. ( 2003 ) Instrumental and Pavlovian incentive processes have dissociable effects on components of a heterogeneous instrumental chain. J. Exp. Psych.: Anim. Behav. Proc., 29, 99 – 106.en_US
dc.identifier.citedreferenceCritchfield, T. S. & Kollins, S. H. ( 2001 ) Temporal discounting: basic research and the analysis of socially important behavior. J. Appl. Behav. Anal., 34, 101 – 122.en_US
dc.identifier.citedreferenceDayan, P. & Balleine, B. W. ( 2002 ) Reward, motivation and, reinforcement learning. Neuron, 36, 285 – 298.en_US
dc.identifier.citedreferenceDi Chiara, G. ( 2002 ) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav. Brain Res., 137, 75 – 114.en_US
dc.identifier.citedreferenceDickinson, A. & Balleine, B. ( 2002 ) The role of learning in the operation of motivational systems. In Gallistel, C. R. (Ed.), Stevens' Handbook of Experimental Psychology: Learning, Motivation, and Emotion. Wiley and Sons, New York, pp. 497 – 534.en_US
dc.identifier.citedreferenceEveritt, B. J. & Wolf, M. E. ( 2002 ) Psychomotor stimulant addiction: a neural systems perspective. J. Neurosci., 22, 3312 – 3320.en_US
dc.identifier.citedreferenceGalaverna, O. G., Seeley, R. J., Berridge, K. C., Grill, H. J., Epstein, A. N. & Schulkin, J. ( 1993 ) Lesions of the central nucleus of the amygdala. I: Effects on taste reactivity, taste aversion learning and sodium appetite. Behav. Brain Res., 59, 11 – 17.en_US
dc.identifier.citedreferenceGhitza, U. E., Fabbricatore, A. T., Prokopenko, V., Pawlak, A. P. & West, M. O. ( 2003 ) Persistent cue-evoked activity of accumbens neurons after prolonged abstinence from self-administered cocaine. J. Neurosci., 23, 7239 – 7245.en_US
dc.identifier.citedreferenceGiordano, L. A., Bickel, W. K., Loewenstein, G., Jacobs, E. A., Marsch, L. & Badger, G. J. ( 2002 ) Mild opioid deprivation increases the degree that opioid-dependent outpatients discount delayed heroin and money. Psychopharmacology, 163, 174 – 182.en_US
dc.identifier.citedreferenceHarmer, C. J. & Phillips, G. D. ( 1998 ) Enhanced appetitive conditioning following repeated pretreatment with d-amphetamine. Behav. Pharmacol., 9, 299 – 308.en_US
dc.identifier.citedreferenceHyman, S. E. & Malenka, R. C. ( 2001 ) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci., 2, 695 – 703.en_US
dc.identifier.citedreferenceKalivas, P. W., Churchill, L. & Romanides, A. ( 1999 ) Involvement of the pallidal-thalamocortical circuit in adaptive behavior. Ann. N. Y. Acad. Sci., 877, 64 – 70.en_US
dc.identifier.citedreferenceKalivas, P. W. & Nakamura, M. ( 1999 ) Neural systems for behavioral activation and reward. Curr. Opin. Neurobiol., 9, 223 – 227.en_US
dc.identifier.citedreferenceKelley, A. E., Andrzejewski, M. E., Baldwin, A. E., Hernandez, P. J. & Pratt, W. E. ( 2003 ) Glutamate-mediated plasticity in corticostriatal networks: role in adaptive motor learning. Ann. N. Y. Acad. Sci., 1003, 159 – 168.en_US
dc.identifier.citedreferenceKlitenick, M. A., Deutch, A. Y., Churchill, L. & Kalivas, P. W. ( 1992 ) Topography and functional role of dopaminergic projections from the ventral mesencephalic tegmentum to the ventral pallidum. Neuroscience, 50, 371 – 386.en_US
dc.identifier.citedreferenceKuczenski, R., Melega, W. P., Cho, A. K. & Segal, D. S. ( 1997 ) Extracellular dopamine and amphetamine after systemic amphetamine administration: comparison to the behavioral response. J. Pharmacol. Exp. Ther., 282, 591 – 596.en_US
dc.identifier.citedreferenceMacLennan, A. J. & Maier, S. F. ( 1983 ) Coping and the stress-induced potentiation of stimulant stereotypy in the rat. Science, 219, 1091 – 1093.en_US
dc.identifier.citedreferenceMarinelli, M., Cooper, D. C., Baker, L. K. & White, F. J. ( 2003 ) Impulse activity of midbrain dopamine neurons modulates drug-seeking behavior. Psychopharmacology, 168, 84 – 98.en_US
dc.identifier.citedreferenceMatthews, T. J. & Lerer, B. E. ( 1987 ) Behavior patterns in pigeons during autoshaping with an incremental conditioned-stimulus. Learn. Behav., 15, 69 – 75.en_US
dc.identifier.citedreferenceMcClure, S. M., Daw, N. D. & Montague, P. R. ( 2003 ) A computational substrate for incentive salience. Trends Neurosci., 26, 423 – 428.en_US
dc.identifier.citedreferenceMontague, P. R. & Berns, G. S. ( 2002 ) Neural economics and the biological substrates of valuation. Neuron, 36, 265 – 284.en_US
dc.identifier.citedreferenceNicola, S. M., Yun, I. A., Wakabayashi, K. T. & Fields, H. L. ( 2004 ) Cue-evoked firing of nucleus accumbens neurons encodes motivational significance during a discriminative stimulus task. J. Neurophysiol., 91, 1840 – 1865.en_US
dc.identifier.citedreferenceO'Doherty, J. P., Dayan, P., Friston, K., Critchley, H. & Dolan, R. J. ( 2003 ) Temporal difference models and reward-related learning in the human brain. Neuron, 38, 329 – 337.en_US
dc.identifier.citedreferenceO'Donnell, P. ( 2003 ) Dopamine gating of forebrain neural ensembles. Eur. J. Neurosci., 17, 429 – 435.en_US
dc.identifier.citedreferenceOlausson, P., Jentsch, J. D. & Taylor, J. R. ( 2003 ) Repeated nicotine exposure enhances reward-related learning in the rat. Neuropsychopharmacology, 28, 1264 – 1271.en_US
dc.identifier.citedreferencePaulson, P. E., Camp, D. M. & Robinson, T. E. ( 1991 ) Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacologia, 103, 480 – 492.en_US
dc.identifier.citedreferencePeoples, L. L., Uzwiak, A. J., Gee, F. & West, M. O. ( 1999 ) Tonic firing of rat nucleus accumbens neurons: changes during the first 2 weeks of daily cocaine self-administration sessions. Brain Res., 822, 231 – 236.en_US
dc.identifier.citedreferencePhillips, G. D., Harmer, C. J. & Hitchcott, P. K. ( 2002 ) Blockade of sensitisation-induced facilitation of appetitive conditioning by post-session intra-amygdala nafadotride. Behav. Brain Res., 134, 249 – 257.en_US
dc.identifier.citedreferencePierce, R. C. & Kalivas, P. W. ( 1997 ) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res. Brain Res. Rev., 25, 192 – 216.en_US
dc.identifier.citedreferenceRedish, A. D. ( 2004 ) Addiction as a computational process gone awry. Science, 306, 1944 – 1947.en_US
dc.identifier.citedreferenceRobinson, T. E. & Berridge, K. C. ( 1993 ) The neural basis of drug craving – an incentive-sensitization theory of addiction. Brain Res. Rev., 18, 247 – 291.en_US
dc.identifier.citedreferenceRobinson, T. E. & Berridge, K. C. ( 2003 ) Addiction. Annu. Rev. Psychol., 54, 25 – 53.en_US
dc.identifier.citedreferenceRobinson, T. E. & Kolb, B. ( 1999 ) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci., 11, 1598 – 1604.en_US
dc.identifier.citedreferenceRobinson, S., Sandstrom, S. M., Denenberg, V. H. & Palmiter, R. D. ( 2005 ) Distinguishing whether dopamine regulates liking, wanting, and/or learning about rewards. Behav. Neurosci., 119, 5 – 15.en_US
dc.identifier.citedreferenceRoitman, M. F., Na, E., Anderson, G., Jones, T. A. & Bernstein, I. L. ( 2002 ) Induction of a salt appetite alters dendritic morphology in nucleus accumbens and sensitizes rats to amphetamine. J. Neurosci., 22, RC225 – RC229.en_US
dc.identifier.citedreferenceSchultz, W. ( 2002 ) Getting formal with dopamine and reward. Neuron, 36, 241 – 263.en_US
dc.identifier.citedreferenceSchultz, W., Dayan, P. & Montague, P. R. ( 1997 ) A neural substrate of prediction and reward. Science, 275, 1593 – 1599.en_US
dc.identifier.citedreferenceSmith, K. S. & Berridge, K. C. ( 2005 ) The ventral pallidum and hedonic reward: neurochemical maps of sucrose ‘liking’ and eating. J. Neurosci., 25, 8637 – 8649.en_US
dc.identifier.citedreferenceSteiner, J. E., Glaser, D., Hawilo, M. E. & Berridge, K. C. ( 2001 ) Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neurosci. Biobehav. Rev., 25, 53 – 74.en_US
dc.identifier.citedreferenceTang, X. C., McFarland, K., Cagle, S. & Kalivas, P. W. ( 2005 ) Cocaine-induced reinstatement requires endogenous stimulation of mu-opioid receptors in the ventral pallidum. J. Neurosci., 25, 4512 – 4520.en_US
dc.identifier.citedreferenceTaylor, J. R. & Jentsch, J. D. ( 2001 ) Repeated intermittent administration of psychomotor stimulant drugs alters the acquisition of Pavlovian approach behavior in rats: differential effects of cocaine, d-amphetamine and 3,4-methylenedioxymethamphetamine (‘Ecstasy’). Biol. Psychiat., 50, 137 – 143.en_US
dc.identifier.citedreferenceTimberlake, W., Wahl, G. & King, D. ( 1982 ) Stimulus and response contingencies in the misbehavior of rats. J. Exp. Psych.: Anim. Behav. Proc., 8, 65 – 85.en_US
dc.identifier.citedreferenceTindell, A. J., Berridge, K. C. & Aldridge, J. W. ( 2004 ) Ventral pallidal representation of pavlovian cues and reward: population and rate codes. J. Neurosci., 24, 1058 – 1069.en_US
dc.identifier.citedreferenceToates, F. ( 1986 ) Motivational Systems. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceTurner, M. S., Lavin, A., Grace, A. A. & Napier, T. C. ( 2001 ) Regulation of limbic information outflow by the subthalamic nucleus: excitatory amino acid projections to the ventral pallidum. J. Neurosci., 21, 2820 – 2832.en_US
dc.identifier.citedreferenceTurner, M. S., Mignon, L. & Napier, T. C. ( 2002 ) Alterations in responses of ventral pallidal neurons to excitatory amino acids after long-term dopamine depletion. J. Pharmacol. Exp. Ther., 301, 371 – 381.en_US
dc.identifier.citedreferenceUsuda, I., Tanaka, K. & Chiba, T. ( 1998 ) Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study. Brain Res., 797, 73 – 93.en_US
dc.identifier.citedreferenceVuchinich, R. E. & Simpson, C. A. ( 1998 ) Hyperbolic temporal discounting in social drinkers and problem drinkers. Exp. Clin. Psychopharmacol., 6, 292 – 305.en_US
dc.identifier.citedreferenceWyvell, C. L. & Berridge, K. C. ( 2001 ) Incentive sensitization by previous amphetamine exposure: increased cue-triggered ‘wanting’ for sucrose reward. J. Neurosci., 21, 7831 – 7840.en_US
dc.identifier.citedreferenceZhang, J., Riehle, A., Requin, J. & Kornblum, S. ( 1997 ) Dynamics of single neuron activity in monkey primary motor cortex related to sensorimotor transformation. J. Neurosci., 17, 2227 – 2246.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.