Show simple item record

Intracellular NOD-like receptors in innate immunity, infection and disease

dc.contributor.authorFranchi, Luigien_US
dc.contributor.authorPark, Jong-Hwanen_US
dc.contributor.authorShaw, Michael H.en_US
dc.contributor.authorMarina-Garcia, Noemien_US
dc.contributor.authorChen, Graceen_US
dc.contributor.authorKim, Yun-Gien_US
dc.contributor.authorNúñez, Gabrielen_US
dc.date.accessioned2010-06-01T19:31:30Z
dc.date.available2010-06-01T19:31:30Z
dc.date.issued2008-01en_US
dc.identifier.citationFranchi, Luigi; Park, Jong-Hwan; Shaw, Michael H.; Marina-Garcia, Noemi; Chen, Grace; Kim, Yun-Gi; NÚÑez, Gabriel (2008). "Intracellular NOD-like receptors in innate immunity, infection and disease." Cellular Microbiology 10(1): 1-8. <http://hdl.handle.net/2027.42/72662>en_US
dc.identifier.issn1462-5814en_US
dc.identifier.issn1462-5822en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72662
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17944960&dopt=citationen_US
dc.description.abstractThe innate immune system comprises several classes of pattern-recognition receptors, including Toll-like receptors (TLRs) and nucleotide binding and oligomerization domain-like receptors (NLRs). TLRs recognize microbes on the cell surface and in endosomes, whereas NLRs sense microbial molecules in the cytosol. In this review, we focus on the role of NLRs in host defence against bacterial pathogens. Nod1 and Nod2 sense the cytosolic presence of molecules containing meso-diaminopimelic acid and muramyl dipeptide respectively, and drive the activation of mitogen-activated protein kinase and NF-κB. In contrast, Ipaf, Nalp1b and Cryopyrin/Nalp3 promote the assembly of inflammasomes that are required for the activation of caspase-1. Mutation in several NLR members, including NOD2 and Cryopyrin, is associated with the development of inflammatory disorders. Further understanding of NLRs should provide new insights into the mechanisms of host defence and the pathogenesis of inflammatory diseases.en_US
dc.format.extent300519 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2007 The Authors; Journal compilation © 2007 Blackwell Publishing Ltden_US
dc.titleIntracellular NOD-like receptors in innate immunity, infection and diseaseen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid17944960en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72662/1/j.1462-5822.2007.01059.x.pdf
dc.identifier.doi10.1111/j.1462-5822.2007.01059.xen_US
dc.identifier.sourceCellular Microbiologyen_US
dc.identifier.citedreferenceAgostini, L., Martinon, F., Burns, K., McDermott, M.F., Hawkins, P.N., and Tschopp, J. ( 2004 ) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20: 319 – 325.en_US
dc.identifier.citedreferenceAmer, A., Franchi, L., Kanneganti, T.D., Body-Malapel, M., Ozoren, N., Brady, G., et al. ( 2006 ) Regulation of Legionella phagosome maturation and infection through flagellin and host IPAF. J Biol Chem 281: 35217 – 35223.en_US
dc.identifier.citedreferenceBoneca, I.G., Dussurget, O., Cabanes, D., Nahori, M.A., Sousa, S., Lecuit, M., et al. ( 2007 ) A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci USA 104: 997 – 1002.en_US
dc.identifier.citedreferenceBoughan, P.K., Argent, R.H., Body-Malapel, M., Park, J.H., Ewings, K.E., Bowie, A.G., et al. ( 2006 ) Nucleotide-binding oligomerization domain-1 and epidermal growth factor receptor: critical regulators of beta-defensins during Helicobacter pylori infection. J Biol Chem 281: 11637 – 11648.en_US
dc.identifier.citedreferenceBoyden, E.D., and Dietrich, W.F. ( 2006 ) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38: 240 – 244.en_US
dc.identifier.citedreferenceChamaillard, M., Hashimoto, M., Horie, Y., Masumoto, J., Qiu, S., Saab, L., et al. ( 2003 ) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4: 702 – 707.en_US
dc.identifier.citedreferenceDowds, T.A., Masumoto, J., Zhu, L., Inohara, N., and NÚÑez, G. ( 2004 ) Cryopyrin-induced interleukin 1{beta} secretion in monocytic cells: enhanced activity of disease-associated mutants and requirement for ASC. J Biol Chem 279: 21924 – 21928.en_US
dc.identifier.citedreferenceFerwerda, G., Girardin, S.E., Kullberg, B.J., Le Bourhis, L., de Jong, D.J., Langenberg, D.M., et al. ( 2005 ) NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PloS Pathog 1: 279 – 285.en_US
dc.identifier.citedreferenceFortier, A., Diez, E., and Gros, P. ( 2005 ) Naip5/Birc1e and susceptibility to Legionella pneumophila. Trends Microbiol 13: 328 – 335.en_US
dc.identifier.citedreferenceFranchi, L., McDonald, C., Kanneganti, T.D., Amer, A., and NÚÑez, G. ( 2006a ) Nucleotide-binding oligomerization domain-like receptors: intracellular pattern recognition molecules for pathogen detection and host defense. J Immunol 177: 3507 – 3513.en_US
dc.identifier.citedreferenceFranchi, L., Amer, A., Body-Malapel, M., Kanneganti, T.D., Ozoren, N., Jagirdar, R., et al. ( 2006b ) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7: 576 – 582.en_US
dc.identifier.citedreferenceFranchi, L., Stoolman, J., Kanneganti, T.D., Verma, A., Ramphal, R., and NÚÑez, G. ( 2007a ) Critical role for Ipaf in Pseudomonas aeruginosa -Induced caspase-1 activation. Eur J Immunol ( in press ).en_US
dc.identifier.citedreferenceFranchi, L., Kanneganti, T.D., Dubyak, G.R., and NÚÑez, G. ( 2007b ) Differential requirement of P2X7 receptor and intracellular K+ for Caspase-1 activation induced by intracellular and extracellular bacteria. J Biol Chem 282: 18810 – 18818.en_US
dc.identifier.citedreferenceFritz, J.H., Girardin, S.E., Fitting, C., Werts, C., Mengin-Lecreulx, D., Caroff, M., et al. ( 2005 ) Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur J Immunol 35: 2459 – 2470.en_US
dc.identifier.citedreferenceFritz, J.H., Le Bourhis, L., Sellge, G., Magalhaes, J.G., Fsihi, H., Kufer, T.A., et al. ( 2007 ) Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26: 445 – 459.en_US
dc.identifier.citedreferenceGirardin, S.E., Tournebize, R., Mavris, M., Page, A.L., Li, X., Stark, G.R., et al. ( 2001 ) CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive Shigella flexneri. EMBO Report 2: 736 – 742.en_US
dc.identifier.citedreferenceGirardin, S.E., Boneca, I.G., Carneiro, L.A., Antignac, A., Jehanno, M., Viala, J., et al. ( 2003a ) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300: 1584 – 1587.en_US
dc.identifier.citedreferenceGirardin, S.E., Boneca, I.G., Viala, J., Chamaillard, M., Labigne, A., Thomas, G., et al. ( 2003b ) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278: 8869 – 8872.en_US
dc.identifier.citedreferenceHasegawa, M., Kawasaki, A., Yang, K., Fujimoto, Y., Masumoto, J., Breukink, E., et al. ( 2007 ) A role of lipophilic peptidoglycan-related molecules in induction of Nod1-mediated immune responses. J Biol Chem 282: 11757 – 11764.en_US
dc.identifier.citedreferenceHayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., et al. ( 2001 ) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099 – 1103.en_US
dc.identifier.citedreferencevan Heel, D.A., Ghosh, S., Butler, M., Hunt, K.A., Lundberg, A.M., Ahmad, T., et al. ( 2005 ) Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn's disease. Lancet 365: 1794 – 1796.en_US
dc.identifier.citedreferenceHerskovits, A.A., Auerbuch, V., and Portnoy, D.A. ( 2007 ) Bacterial ligands generated in a phagosome are targets of the cytosolic innate immune system. PLoS Pathog 3: e51.en_US
dc.identifier.citedreferenceHilbi, H., Moss, J.E., Hersh, D., Chen, Y., Arondel, J., Banerjee, S., et al. ( 1998 ) Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 273: 32895 – 32900.en_US
dc.identifier.citedreferenceHoffman, H.M., Rosengren, S., Boyle, D.L., Cho, J.Y., Nayar, J., Mueller, J.L., et al. ( 2004 ) Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364: 1779 – 1785.en_US
dc.identifier.citedreferenceHsu, Y.M., Zhang, Y., You, Y., Wang, D., Li, H., Duramad, O., et al. ( 2007 ) The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol 8: 198 – 205.en_US
dc.identifier.citedreferenceHueffer, K., and Galan, J.E. ( 2004 ) Salmonella-induced macrophage death: multiple mechanisms, different outcomes. Cell Microbiol 6: 1019 – 1025.en_US
dc.identifier.citedreferenceHugot, J.P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J.P., Belaiche, J., et al. ( 2001 ) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411: 599 – 603.en_US
dc.identifier.citedreferenceInohara, N., Koseki, T., Lin, J., del Peso, L., Lucas, P.C., Chen, F.F., et al. ( 2000 ) An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem 275: 27823 – 27831.en_US
dc.identifier.citedreferenceInohara, N., Ogura, Y., Chen, F.F., Muto, A., and NÚÑez, G. ( 2001 ) Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J Biol Chem 276: 2551 – 2554.en_US
dc.identifier.citedreferenceInohara, N., Ogura, Y., Fontalba, A., Gutierrez, O., Pons, F., Crespo, J., et al. ( 2003 ) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J Biol Chem 278: 5509 – 5512.en_US
dc.identifier.citedreferenceInohara, A., Chamaillard M., McDonald, C., and NÚÑez, G. ( 2005 ) NOD-LRR proteins: role in host–microbial interactions and inflammatory disease. Annu Rev Biochem 74: 355 – 383.en_US
dc.identifier.citedreferenceIsmair, M.G., Vavricka, S.R., Kullak-Ublick, G.A., Fried, M., Mengin-Lecreulx, D., and Girardin, S.E. ( 2006 ) hPepT1 selectively transports muramyl dipeptide but not Nod1-activating muramyl peptides. Can J Physiol Pharmacol 84: 1313 – 1319.en_US
dc.identifier.citedreferenceKanazawa, N., Okafuji, I., Kambe, N., Nishikomori, R., Nakata-Hizume, M., Nagai, S., et al. ( 2005 ) Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood 105: 1195 – 1197.en_US
dc.identifier.citedreferenceKanneganti, T.D., Body-Malapel, M., Amer, A., Park, J.H., Whitfield, J., Franchi, L., et al. ( 2006 ) Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 281: 36560 – 36568.en_US
dc.identifier.citedreferenceKanneganti, T.D., Lamkanfi, M., Kim, Y.G., Chen, G., Park, J.H., Franchi, L., et al. ( 2007 ) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26: 433 – 443.en_US
dc.identifier.citedreferenceKapetanovic, R., Nahori, M.A., Balloy, V., Fitting, C., Philpott, D.J., Cavaillon, J.M., and Adib-Conquy, M. ( 2007 ) Contribution of phagocytosis and intracellular sensing for cytokine production by Staphylococcus aureus -activated macrophages. Infect Immun 75: 830 – 837.en_US
dc.identifier.citedreferenceKawai, T., and Akira, S. ( 2006 ) Innate immune recognition of viral infection. Nat Immunol 7: 131 – 137.en_US
dc.identifier.citedreferenceKim, J.G., Lee, S.J., and Kagnoff, M.F. ( 2004 ) Nod1 is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by toll-like receptors. Infect Immun 72: 1487 – 1495.en_US
dc.identifier.citedreferenceKobayashi, K.S., Chamaillard, M., Ogura, Y., Henegariu, O., Inohara, N., NÚÑez, G., and Flavell, R.A. ( 2005 ) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307: 731 – 734.en_US
dc.identifier.citedreferenceLamkanfi, M., Kanneganti, T.D., Franchi, L., and NÚÑez, G. ( 2007a ) Caspase-1 inflammasomes in infection and inflammation. J Leukoc Biol 82: 220 – 225.en_US
dc.identifier.citedreferenceLamkanfi, M., Amer, A., Kanneganti, T.D., Munoz-Planillo, R., Chen, G., Vandenabeele, P., et al. ( 2007b ) The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J Immunol 178: 8022 – 8027.en_US
dc.identifier.citedreferenceLara-Tejero, M., Sutterwala, F.S., Ogura, Y., Grant, E.P., Bertin, J., Coyle, A.J., et al. ( 2006 ) Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med 203: 1407 – 1412.en_US
dc.identifier.citedreferenceLevine, B. ( 2005 ) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120: 159 – 162.en_US
dc.identifier.citedreferenceMcDonald, C., Inohara, N., and NÚÑez, G. ( 2005 ) Peptidoglycan signaling in innate immunity and inflammatory disease. J Biol Chem 280: 20177 – 20180.en_US
dc.identifier.citedreferenceMaeda, S., Hsu, L.C., Liu, H., Bankston, L.A., Iimura, M., Kagnoff, M.F., et al. ( 2005 ) Nod2 mutation in Crohn's disease potentiates NF-kappaB activity and IL-1beta processing. Science 307: 734 – 738.en_US
dc.identifier.citedreferenceMariathasan, S., Newton, K., Monack, D.M., Vucic, D., French, D.M., Lee, W.P., et al. ( 2004 ) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430: 213 – 218.en_US
dc.identifier.citedreferenceMariathasan, S., Weiss, D.S., Newton, K., McBride, J., O'Rourke, K., Roose-Girma, M., et al. ( 2006 ) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440: 228 – 232.en_US
dc.identifier.citedreferenceMartinon, F., Petrilli, V., Mayor, A., Tardivel, A., and Tschopp, J. ( 2006 ) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440: 237 – 241.en_US
dc.identifier.citedreferenceMasumoto, J., Dowds, T.A., Schaner, P., Chen, F.F., Ogura, Y., Li, M., et al. ( 2003 ) ASC is an activating adaptor for NF-kappa B and caspase-8-dependent apoptosis. Biochem Biophys Res Commun 303: 69 – 73.en_US
dc.identifier.citedreferenceMasumoto, J., Yang, K., Varambally, S., Hasegawa, M., Tomlins, S.A., Qiu, S., et al. ( 2006 ) Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo. J Exp Med 203: 203 – 213.en_US
dc.identifier.citedreferenceMiao, E.A., Alpuche-Aranda, C.M., Dors, M., Clark, A.E., Bader, M.W., Miller, S.I., and Aderem, A. ( 2006 ) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7: 569 – 575.en_US
dc.identifier.citedreferenceMiceli-Richard, C., Lesage, S., Rybojad, M., Prieur, A.M., Manouvrier-Hanu, S., Hafner, R., et al. ( 2001 ) CARD15 mutations in Blau syndrome. Nat Genet 29: 19 – 20.en_US
dc.identifier.citedreferenceMolofsky, A.B., Byrne, B.G., Whitfield, N.N., Madigan, C.A., Fuse, E.T., Tateda, K., and Swanson, M.S. ( 2006 ) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203: 1093 – 1104.en_US
dc.identifier.citedreferenceOgawa, M., Yoshimori, T., Suzuki, T., Sagara, H., Mizushima, N., and Sasakawa, C. ( 2005 ) Escape of intracellular Shigella from autophagy. Science 307: 727 – 731.en_US
dc.identifier.citedreferenceOgura, Y., Bonen, D.K., Inohara, N., Nicolae, D.L., Chen, F.F., Ramos, R., et al. ( 2001 ) A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411: 603 – 606.en_US
dc.identifier.citedreferenceOpitz, B., Puschel, A., Schmeck, B., Hocke, A.C., Rosseau, S., Hammerschmidt, S., et al. ( 2004 ) Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem 279: 36426 – 36432.en_US
dc.identifier.citedreferenceOpitz, B., Puschel, A., Beermann, W., Hocke, A.C., Forster, S., Schmeck, B., et al. ( 2006 ) Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J Immunol 176: 484 – 490.en_US
dc.identifier.citedreferenceOzoren, N., Masumoto, J., Franchi, L., Kanneganti, T.D., Body-Malapel, M., Erturk, I., et al. ( 2006 ) Distinct roles of TLR2 and the adaptor ASC in IL-1beta/IL-18 secretion in response to Listeria monocytogenes. J Immunol 176: 4337 – 4342.en_US
dc.identifier.citedreferencePark, J.H., Kim, Y.G., McDonald, C., Kanneganti, T.D., Hasegawa, M., Body-Malapel, M., et al. ( 2007a ) RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol 178: 2380 – 2386.en_US
dc.identifier.citedreferencePark, J.H., Kim, Y.G., Shaw, M., Kanneganti, T.D., Fujimoto, Y., Fukase, K., et al. ( 2007b ) Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. J Immunol 179: 514 – 521.en_US
dc.identifier.citedreferenceRen, T., Zamboni, D.S., Roy, C.R., Dietrich, W.F., and Vance, R.E. ( 2006 ) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2: e18.en_US
dc.identifier.citedreferenceSutterwala, F.S., Ogura, Y., Szczepanik, M., Lara-Tejero, M., Lichtenberger, G.S., Grant, E.P., et al. ( 2006 ) Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24: 317 – 327.en_US
dc.identifier.citedreferenceSuzuki, T., Franchi, L., Toma, C., Ashida, H., Ogawa, M., Yoshikawa, Y., et al. ( 2007 ) Differential regulation of caspase-1 activation, pyroptosis and autophagy via Ipaf and ASC in Shigella -infected macrophages. PloS Pathog 3: e111.en_US
dc.identifier.citedreferenceTada, H., Aiba, S., Shibata, K., Ohteki, T., and Takada, H. ( 2005 ) Synergistic effect of Nod1 and Nod2 agonists with toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells. Infect Immun 73: 7967 – 7976.en_US
dc.identifier.citedreferenceTanabe, T., Chamaillard, M., Ogura, Y., Zhu, L., Qiu, S., Masumoto, J., et al. ( 2004 ) Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J 23: 1587 – 1597.en_US
dc.identifier.citedreferenceTschopp, J., Martinon, F., and Burns, K. ( 2003 ) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4: 95 – 104.en_US
dc.identifier.citedreferenceUematsu, S., Jang, M.H., Chevrier, N., Guo, Z., Kumagai, Y., Yamamoto, M., et al. ( 2006 ) Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat Immunol 7: 868 – 874.en_US
dc.identifier.citedreferenceViala, J., Chaput, C., Boneca, I.G., Cardona, A., Girardin, S.E., Moran, A.P., et al. ( 2004 ) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5: 1166 – 1174.en_US
dc.identifier.citedreferenceWatanabe, T., Kitani, A., Murray, P.J., and Strober, W. ( 2004 ) NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol 5: 800 – 808.en_US
dc.identifier.citedreferenceZamboni, D.S., Kobayashi, K.S., Kohlsdorf, T., Ogura, Y., Long, E.M., Vance, R.E., et al. ( 2006 ) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7: 318 – 325.en_US
dc.identifier.citedreferenceZilbauer, M., Dorrell, N., Elmi, A., Lindley, K.J., Schuller, S., Jones, H.E., et al. ( 2007 ) A major role for intestinal epithelial nucleotide oligomerization domain 1 (NOD1) in eliciting host bactericidal immune responses to Campylobacter jejuni. Cell Microbiol 9: 2404 – 2416.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.