Show simple item record

Engineering craniofacial scaffolds

dc.contributor.authorHollister, Scott J.en_US
dc.contributor.authorLin, C. Y.en_US
dc.contributor.authorSaito, Eijien_US
dc.contributor.authorLin, C. Y.en_US
dc.contributor.authorSchek, R. D.en_US
dc.contributor.authorTaboas, Juan M.en_US
dc.contributor.authorWilliams, J. M.en_US
dc.contributor.authorPartee, B.en_US
dc.contributor.authorFlanagan, Colleen L.en_US
dc.contributor.authorDiggs, A.en_US
dc.contributor.authorWilke, E. N.en_US
dc.contributor.authorVan Lenthe, G. H.en_US
dc.contributor.authorMüller, R.en_US
dc.contributor.authorWirtz, Tobiasen_US
dc.contributor.authorDas, S.en_US
dc.contributor.authorFeinberg, Stephen E.en_US
dc.contributor.authorKrebsbach, Paul H.en_US
dc.date.accessioned2010-06-01T19:32:20Z
dc.date.available2010-06-01T19:32:20Z
dc.date.issued2005-08en_US
dc.identifier.citationHollister, SJ; Lin, CY; Saito, E; Lin, CY; Schek, RD; Taboas, JM; Williams, JM; Partee, B; Flanagan, CL; Diggs, A; Wilke, EN; Van Lenthe, GH; MÜller, R; Wirtz, T; Das, S; Feinberg, SE; Krebsbach, PH (2005). "Engineering craniofacial scaffolds." Orthodontics & Craniofacial Research 8(3): 162-173. <http://hdl.handle.net/2027.42/72676>en_US
dc.identifier.issn1601-6335en_US
dc.identifier.issn1601-6343en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72676
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16022718&dopt=citationen_US
dc.format.extent411641 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMunksgaard International Publishersen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rights2005 Blackwell Munksgaarden_US
dc.subject.otherCraniofacialen_US
dc.subject.otherFabricationen_US
dc.subject.otherImage-based Designen_US
dc.subject.otherSolid Free-formen_US
dc.subject.otherTemporomandibular Jointen_US
dc.subject.otherTissue Engineeringen_US
dc.titleEngineering craniofacial scaffoldsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid16022718en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72676/1/j.1601-6343.2005.00329.x.pdf
dc.identifier.doi10.1111/j.1601-6343.2005.00329.xen_US
dc.identifier.sourceOrthodontics & Craniofacial Researchen_US
dc.identifier.citedreferenceHollister SJ, Maddox RD, Taboas JM. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 2002; 23: 4095 – 103.en_US
dc.identifier.citedreferenceHutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000; 21: 2529 – 43.en_US
dc.identifier.citedreferenceYaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos A. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 1995; 17: 175 – 85.en_US
dc.identifier.citedreferenceSchwartz-Dabney CL, Dechow PC. Accuracy of elastic property measurement in mandibular cortical bone is improved by using cylindrical specimens. J Biomech Eng 2002; 124: 714 – 23.en_US
dc.identifier.citedreferenceSchwartz-Dabney CL, Dechow PC. Edentulation alters material properties of cortical bone in the human mandible. J Dent Res 2002; 81: 613 – 7.en_US
dc.identifier.citedreferenceSchwartz-Dabney CL, Dechow PC. Variations in cortical material properties throughout the human dentate mandible. Am J Phys Anthropol 2003; 120: 252 – 77.en_US
dc.identifier.citedreferenceGiesen EB, Ding M, Dalstra M, van Eijden TM. Changed morphology and mechanical properties of cancellous bone in the mandibular condyles of edentate people. J Dent Res 2004; 83: 255 – 9.en_US
dc.identifier.citedreferenceGiesen EB, Ding M, Dalstra M, van Eijden TM. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. J Biomech 2001; 34: 799 – 803.en_US
dc.identifier.citedreferenceO'Mahony AM, Williams JL, Katz JO, Spencer P. Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clin Oral Implants Res 2000; 11: 415 – 21.en_US
dc.identifier.citedreferenceDechow PC, Hylander WL. Elastic properties and masticatory bone stress in the macaque mandible. Am J Phys Anthropol 2000; 112: 553 – 74.en_US
dc.identifier.citedreferenceAshman RB, Rosinia G, Cowin SC, Fontenot MG, Rice JC. The bone tissue of the canine mandible is elastically isotropic. J Biomech 1985; 18: 717 – 21.en_US
dc.identifier.citedreferenceDetamore MS, Athanasiou KA. Motivation, characterization, and strategy for tissue engineering the temporomandibular joint disc. Tissue Eng 2003; 9: 1065 – 87.en_US
dc.identifier.citedreferenceHu K, Radhakrishnan P, Patel RV, Mao JJ. Regional structural and viscoelastic properties of fibrocartilage upon dynamic nanoindentation of the articular condyle. J Struct Biol 2001; 136: 46 – 52.en_US
dc.identifier.citedreferencePatel RV, Mao JJ. Microstructural and elastic properties of the extracellular matrices of the superficial zone of neonatal articular cartilage by atomic force microscopy. Front Biosci 2003; 8: a18 – 25.en_US
dc.identifier.citedreferenceFong KD, Nacamuli RP, Song HM, Warren SM, Lorenz HP, Longaker MT. New strategies for craniofacial repair and replacement: a brief review. J Craniofac Surg 2003; 14: 333 – 9.en_US
dc.identifier.citedreferenceHollinger JO, Winn SR. Tissue engineering of bone in the craniofacial complex. Ann N Y Acad Sci 1999; 875: 379 – 85.en_US
dc.identifier.citedreferenceWarren SM, Fong KD, Chen CM et al. Tools and techniques for craniofacial tissue engineering. Tissue Eng 2003; 9: 187 – 200.en_US
dc.identifier.citedreferenceIsogai N, Landis W, Kim TH, Gerstenfeld LC, Upton J, Vacanti JP. Formation of phalanges and small joints by tissue-engineering. J Bone Joint Surg Am 1999; 81: 306 – 16.en_US
dc.identifier.citedreferenceHollister SJ, Levy RA, Chu TM, Halloran JW, Feinberg SE. An image-based approach for designing and manufacturing craniofacial scaffolds. Int J Oral Maxillofac Surg 2000; 29: 67 – 71.en_US
dc.identifier.citedreferenceHollister SJ, Brennan JM, Kikuchi N. A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech 1994; 27: 433 – 44.en_US
dc.identifier.citedreferenceSanchez-Palencia E, Zaoui A. In: Araki H, Kyoto J et al., editors. Homogenization Techniques for Composite Media, Lecture Notes in Physics. New York: Springer-Verlag; 1987. 272 pp.en_US
dc.identifier.citedreferenceHornung U (ed). Homogenization and Porous Media. Interdisciplinary Applied Mathematics. New York: Springer-Verlag; 1997.en_US
dc.identifier.citedreferenceLin CY, Kikuchi N, Hollister SJ. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 2004; 37: 623 – 36.en_US
dc.identifier.citedreferenceSvanberg K. The method of moving asymptotes – a new method for structural optimization. Int J Num Meth Eng 1987; 24: 359.en_US
dc.identifier.citedreferenceHollister SJ, Taboas JM, Schek RM, Lin CY, Chu TM. Design and fabrication of bone tissue engineering scaffolds. In: Hollinger JO, editor. Bone Tissue Engineering. CRC Press, 2005.en_US
dc.identifier.citedreferenceHutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 2004; 22: 354 – 62.en_US
dc.identifier.citedreferenceDas S, Adewunmi B, Williams JM, Flanagan CL, Engel A, Hollister SJ et al. Mechanical and structural properties of polycaprolactone scaffolds made by selective laser sintering. Proceedings of the 7th World Biomaterials Congress, Sydney, 2004.en_US
dc.identifier.citedreferenceChu TM, Orton DG, Hollister SJ, Feinberg SE, Halloran JW. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 2002; 23: 1283 – 93.en_US
dc.identifier.citedreferenceTaboas JM, Maddox RD, Krebsbach PH, Hollister SJ. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 2003; 24: 181 – 94.en_US
dc.identifier.citedreferenceDiggs A, Hollister SJ, Chu TM. Fabrication and characterization of 3D biphasic ceramic scaffolds composed of hydroxyapatite and b-tricalcium phosphate. Proc Soc Biomater 2003; 353.en_US
dc.identifier.citedreferenceSaito E, Flanagan CL, Taboas JM, Hollister SJ. Computational and experimental mechanical properties of designed 50/50 PLGA scaffolds made by indirect solid free-form fabrication. Trans Orthop Res Soc 2004; 29: 745.en_US
dc.identifier.citedreferenceSchek RM, Hollister SJ, Krebsbach PH. Delivery and protection of adenoviruses using biocompatible hydrogels for localized gene therapy. Mol Ther 2004; 9: 130 – 8.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.