Show simple item record

Live cell fluorescence microscopy to study microbial pathogenesis

dc.contributor.authorHoppe, Adam D.en_US
dc.contributor.authorSeveau, Stephanieen_US
dc.contributor.authorSwanson, Joel A.en_US
dc.date.accessioned2010-06-01T19:33:08Z
dc.date.available2010-06-01T19:33:08Z
dc.date.issued2009-04en_US
dc.identifier.citationHoppe, Adam D.; Seveau, Stephanie; Swanson, Joel A. (2009). "Live cell fluorescence microscopy to study microbial pathogenesis." Cellular Microbiology 11(4): 540-550. <http://hdl.handle.net/2027.42/72689>en_US
dc.identifier.issn1462-5814en_US
dc.identifier.issn1462-5822en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72689
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19134122&dopt=citationen_US
dc.description.abstractAdvances in microscopy and fluorescent probes provide new insight into the nanometer-scale biochemistry governing the interactions between eukaryotic cells and pathogens. When combined with mathematical modelling, these new technologies hold the promise of qualitative, quantitative and predictive descriptions of these pathways. Using the light microscope to study the spatial and temporal relationships between pathogens, host cells and their respective biochemical machinery requires an appreciation for how fluorescent probes and imaging devices function. This review summarizes how live cell fluorescence microscopy with common instruments can provide quantitative insight into the cellular and molecular functions of hosts and pathogens.en_US
dc.format.extent269553 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2009 Blackwell Publishing Ltden_US
dc.titleLive cell fluorescence microscopy to study microbial pathogenesisen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA.en_US
dc.contributor.affiliationotherDepartment of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007-0896, USA.en_US
dc.contributor.affiliationotherDepartment of Microbiology and Center for Microbial Interface Biology, Ohio State University Columbus, OH 43210, USA.en_US
dc.identifier.pmid19134122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72689/1/j.1462-5822.2009.01283.x.pdf
dc.identifier.doi10.1111/j.1462-5822.2009.01283.xen_US
dc.identifier.sourceCellular Microbiologyen_US
dc.identifier.citedreferenceAgard, D.A., and Sedat, J.W. ( 1983 ) Three-dimensional architecture of a polytene nucleus. Nature 302: 676 – 681.en_US
dc.identifier.citedreferenceAlpuche-Aranda, C.M., Swanson, J.A., Loomis, W.P., and Miller, S.I. ( 1992 ) Salmonella typhimurium activates virulence gene transcription within acidified phagosomes. Proc Nat Acad Sci USA 89: 10079 – 10083.en_US
dc.identifier.citedreferenceBetzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., et al. ( 2006 ) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313: 1642 – 1645.en_US
dc.identifier.citedreferenceCai, D., Verhey, K.J., and Meyhofer, E. ( 2007 ) Tracking single Kinesin molecules in the cytoplasm of mammalian cells. Biophys J 92: 4137 – 4144.en_US
dc.identifier.citedreferenceChristensen, K.A., Myers, J.T., and Swanson, J.A. ( 2002 ) pH-dependent regulation of lysosomal calcium in macrophages. J Cell Sci 115: 599 – 607.en_US
dc.identifier.citedreferenceComeau, J.W., Costantino, S., and Wiseman, P.W. ( 2006 ) A guide to accurate fluorescence microscopy colocalization measurements. Biophys J 91: 4611 – 4622.en_US
dc.identifier.citedreferenceDemuro, A., and Parker, I. ( 2006 ) Imaging single-channel calcium microdomains. Cell Calcium 40: 413 – 422.en_US
dc.identifier.citedreferenceDrecktrah, D., Knodler, L.A., Howe, D., and Steele-Mortimer, O. ( 2007 ) Salmonella trafficking is defined by continuous dynamic interactions with the endolysosomal system. Traffic 8: 212 – 225.en_US
dc.identifier.citedreferenceDrecktrah, D., Levine-Wilkinson, S., Dam, T., Winfree, S., Knodler, L.A., Schroer, T.A., and Steele-Mortimer, O. ( 2008 ) Dynamic behavior of Salmonella -induced membrane tubules in epithelial cells. Traffic 9: 2117 – 2129.en_US
dc.identifier.citedreferenceEnninga, J., Sansonetti, P., and Tournebize, R. ( 2007 ) Roundtrip explorations of bacterial infection: from single cells to the entire host and back. Trends Microbiol 15: 483 – 490.en_US
dc.identifier.citedreferenceErickson, M.G., Alseikhan, B.A., Peterson, B.Z., and Yue, D.T. ( 2001 ) Preassociation of calmodulin with voltage-gated Ca(2+) channels revealed by FRET in single living cells. Neuron 31: 973 – 985.en_US
dc.identifier.citedreferenceGalperin, E., Verkhusha, V.V., and Sorkin, A. ( 2004 ) Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells. Nat Methods 1: 209 – 217.en_US
dc.identifier.citedreferenceGarcia Vescovi, E., Soncini, F.C., and Groisman, E.A. ( 1996 ) Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84: 165 – 174.en_US
dc.identifier.citedreferenceGustafsson, M.G., Shao, L., Carlton, P.M., Wang, C.J., Golubovskaya, I.N., Cande, W.Z., et al. ( 2008 ) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94: 4957 – 4970.en_US
dc.identifier.citedreferenceHa, T., Enderle, T., Ogletree, D.F., Chemla, D.S., Selvin, P.R., and Weiss, S. ( 1996 ) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93: 6264 – 6268.en_US
dc.identifier.citedreferenceHe, L., Olson, D.P., Wu, X., Karpova, T.S., McNally, J.G., and Lipsky, P.E. ( 2003 ) A flow cytometric method to detect protein–protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP→YFP fluorescence resonance energy transfer (FRET). Cytometry A 55: 71 – 85.en_US
dc.identifier.citedreferenceHenry, R., Shaughnessy, L., Loessner, M.J., Alberti-Segui, C., Higgins, D.E., and Swanson, J.A. ( 2006 ) Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes. Cell Microbiol 8: 107 – 119.en_US
dc.identifier.citedreferenceHolmes, T.J., Briggs, D., and Abu Tarif, A. ( 2006 ) Blind deconvolution. In Handbook of Biological Confocal Microscopy. Pawley, J.B. (ed.). New York: Springer, pp. 468 – 487.en_US
dc.identifier.citedreferenceHoppe, A., Christensen, K., and Swanson, J.A. ( 2002 ) Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys J 83: 3652 – 3664.en_US
dc.identifier.citedreferenceHoppe, A.D., Shorte, S.L., Swanson, J.A., and Heintzmann, R. ( 2008 ) Three-dimensional FRET reconstruction microscopy for analysis of dynamic molecular interactions in live cells. Biophys J 95: 400 – 418.en_US
dc.identifier.citedreferenceHu, C., and Kerppola, T. ( 2003 ) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21: 539 – 545.en_US
dc.identifier.citedreferenceHuh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., and O'Shea, E.K. ( 2003 ) Global analysis of protein localization in budding yeast. Nature 425: 686 – 691.en_US
dc.identifier.citedreferenceHuisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., and Stelzer, E.H. ( 2004 ) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305: 1007 – 1009.en_US
dc.identifier.citedreferenceJares-Erijman, E.A., and Jovin, T.M. ( 2003 ) FRET imaging. Nat Biotechnol 21: 1387 – 1395.en_US
dc.identifier.citedreferenceKeller, P.J., Schmidt, A.D., Wittbrodt, J., and Stelzer, E.H. ( 2008 ) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322: 1065 – 1069.en_US
dc.identifier.citedreferenceKyei, G.B., Vergne, I., Chua, J., Roberts, E., Harris, J., Junutula, J.R., and Deretic, V. ( 2006 ) Rab14 is critical for maintenance of Mycobacterium tuberculosis phagosome maturation arrest. EMBO J 25: 5250 – 5259.en_US
dc.identifier.citedreferenceLoessner, M.J., Kramer, K., Ebel, F., and Scherer, S. ( 2002 ) C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol 44: 335 – 349.en_US
dc.identifier.citedreferenceLuker, K.E., Smith, M.C., Luker, G.D., Gammon, S.T., Piwnica-Worms, H., and Piwnica-Worms, D. ( 2004 ) Kinetics of regulated protein–protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci USA 101: 12288 – 12293.en_US
dc.identifier.citedreferenceMansson, L.E., Melican, K., Molitoris, B.A., and Richter-Dahlfors, A. ( 2007 ) Progression of bacterial infections studied in real time – novel perspectives provided by multiphoton microscopy. Cell Microbiol 9: 2334 – 2343.en_US
dc.identifier.citedreferenceMartin-Orozco, N., Touret, N., Zaharik, M.L., Park, E., Kopelman, R., Miller, S., et al. ( 2006 ) Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages. Mol Biol Cell 17: 498 – 510.en_US
dc.identifier.citedreferenceMattheyses, A.L., Hoppe, A.D., and Axelrod, D. ( 2004 ) Polarized fluorescence resonance energy transfer microscopy. Biophys J 87: 2787 – 2797.en_US
dc.identifier.citedreferenceMeresse, S., Steele-Mortimer, O., Moreno, E., Desjardins, M., Finlay, B., and Gorvel, J.-P. ( 1999 ) Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biol 1: E183 – E188.en_US
dc.identifier.citedreferenceMiesenbock, G., De Angelis, D.A., and Rothman, J.E. ( 1998 ) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394: 192 – 195.en_US
dc.identifier.citedreferenceNadrigny, F., Rivals, I., Hirrlinger, P.G., Koulakoff, A., Personnaz, L., Vernet, M., et al. ( 2006 ) Detecting fluorescent protein expression and co-localisation on single secretory vesicles with linear spectral unmixing. Eur Biophys J 35: 533 – 547.en_US
dc.identifier.citedreferenceNeher, R., and Neher, E. ( 2004 ) Optimizing imaging parameters for the separation of multiple labels in a fluorescence image. J Microsc 213: 46 – 62.en_US
dc.identifier.citedreferenceNguyen, A.W., and Daugherty, P.S. ( 2005 ) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23: 355 – 360.en_US
dc.identifier.citedreferenceO'Connor, N., and Silver, R.B. ( 2007 ) Ratio imaging: practical considerations for measuring intracellular Ca2+ and pH in living cells. Meth Cell Biol 81: 415 – 433.en_US
dc.identifier.citedreferenceOheim, M., and Dongdong, L. ( 2007 ) Quantitative colocalization imaging: concepts, measurements and pitfalls. In Imaging Cellular and Molecular Biological Functions. Shorte, S.L., and Frischknecht, F. (eds). Springer: Berlin, pp. 117 – 155.en_US
dc.identifier.citedreferencePatterson, G.H., and Lippincott-Schwartz, J. ( 2002 ) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297: 1873 – 1877.en_US
dc.identifier.citedreferencePawley, J.B. ( 2006 ) Handbook of Biological Confocal Microscopy. New York: Springer.en_US
dc.identifier.citedreferencePiwnica-Worms, D., Schuster, D.P., and Garbow, J.R. ( 2004 ) Molecular imaging of host–pathogen interactions in intact small animals. Cell Microbiol 6: 319 – 331.en_US
dc.identifier.citedreferenceRajashekar, R., Liebl, D., Seitz, A., and Hensel, M. ( 2008 ) Dynamic remodeling of the endosomal system during formation of salmonella-induced filaments by intracellular Salmonella enterica. Traffic 9: 2100 – 2116.en_US
dc.identifier.citedreferenceRoberts, E.A., Chua, J., Kyei, G.B., and Deretic, V. ( 2006 ) Higher order Rab programming in phagolysosome biogenesis. J Cell Biol 174: 923 – 929.en_US
dc.identifier.citedreferenceRust, M.J., Bates, M., and Zhuang, X. ( 2006 ) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3: 793 – 795.en_US
dc.identifier.citedreferenceSchermelleh, L., Carlton, P.M., Haase, S., Shao, L., Winoto, L., Kner, P., et al. ( 2008 ) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320: 1332 – 1336.en_US
dc.identifier.citedreferenceSekar, R.B., and Periasamy, A. ( 2003 ) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160: 629 – 633.en_US
dc.identifier.citedreferenceSeveau, S., Bierne, H., Giroux, S., Prevost, M.C., and Cossart, P. ( 2004 ) Role of lipid rafts in E-cadherin- and HGF-R/Met-mediated entry of Listeria monocytogenes into host cells. J Cell Biol 166: 743 – 753.en_US
dc.identifier.citedreferenceSeveau, S., Tham, T.N., Payrastre, B., Hoppe, A.D., Swanson, J.A., and Cossart, P. ( 2007 ) A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-kinase activation in the InlB/Met signalling pathway. Cell Microbiol 9: 790 – 803.en_US
dc.identifier.citedreferenceShaner, N., Campbell, R., Steinbach, P., Giepmans, B., Palmer, A., and Tsien, R. ( 2004 ) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22: 1567 – 1572.en_US
dc.identifier.citedreferenceShaughnessy, L.M., Hoppe, A.D., Christensen, K.A., and Swanson, J.A. ( 2006 ) Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol 8: 781 – 792.en_US
dc.identifier.citedreferenceShroff, H., Galbraith, C.G., Galbraith, J.A., and Betzig, E. ( 2008 ) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5: 417 – 423.en_US
dc.identifier.citedreferenceSimpson, A.W. ( 2006 ) Fluorescent measurement of [Ca2+]c: basic practical considerations. Methods Mol Biol 312: 3 – 36.en_US
dc.identifier.citedreferenceVeiga, E., Guttman, J.A., Bonazzi, M., Boucrot, E., Toledo-Arana, A., Lin, A.E., et al. ( 2007 ) Invasive and adherent bacterial pathogens co-Opt host clathrin for infection. Cell Host Microbe 2: 340 – 351.en_US
dc.identifier.citedreferenceVerveer, P.J., and Jovin, T.M. ( 1997 ) Efficient superresolution restoration algorithms using maximum a posteriori estimations with application to fluorescence microscopy. J Opt Soc Am A 14: 1696.en_US
dc.identifier.citedreferenceViboud, G.I., and Bliska, J.B. ( 2005 ) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59: 69 – 89.en_US
dc.identifier.citedreferenceWong, K.W., and Isberg, R.R. ( 2005 ) Yersinia pseudotuberculosis spatially controls activation and misregulation of host cell Rac1. PLoS Pathog 1: e16.en_US
dc.identifier.citedreferenceYeung, T., Touret, N., and Grinstein, S. ( 2005 ) Quantitative fluorescence microscopy to probe intracellular microenvironments. Curr Opin Microbiol 8: 350 – 358.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.