Show simple item record

The high-affinity phosphate transporter Pst is a virulence factor for Proteus mirabilis during complicated urinary tract infection

dc.contributor.authorJacobsen, Sandra M.en_US
dc.contributor.authorLane, Mary C.en_US
dc.contributor.authorHarro, Jean M.en_US
dc.contributor.authorShirtliff, Mark E.en_US
dc.contributor.authorMobley, Harry L. T.en_US
dc.date.accessioned2010-06-01T19:35:08Z
dc.date.available2010-06-01T19:35:08Z
dc.date.issued2008-03en_US
dc.identifier.citationJacobsen, Sandra M.; Lane, Mary C.; Harro, Jean M.; Shirtliff, Mark E.; Mobley, Harry L. T. (2008). "The high-affinity phosphate transporter Pst is a virulence factor for Proteus mirabilis during complicated urinary tract infection." FEMS Immunology & Medical Microbiology 52(2): 180-193. <http://hdl.handle.net/2027.42/72722>en_US
dc.identifier.issn0928-8244en_US
dc.identifier.issn1574-695Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72722
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18194341&dopt=citationen_US
dc.description.abstractProteus mirabilis is a ubiquitous bacterium associated with complicated urinary tract infection (UTI). Mutagenesis studies of the wild-type strain HI4320 in the CBA mouse model of ascending UTIs have identified attenuated mutants with transposon insertions in genes encoding the high-affinity phosphate transporter Pst ( pstS , pstA ). The transcription of the pst operon ( pstSCAB-phoU ) and other members of the phosphate regulon of Escherichia coli , including alkaline phosphatase (AP), are regulated by the two-component regulatory system PhoBR and are repressed until times of phosphate starvation. This normal suppression was relieved in pstS :Tn5 and pstA :Tn5 mutants, which constitutively produced AP regardless of growth conditions. No significant growth defects were observed in vitro for the pst mutants during the independent culture or coculture studies in rich broth, phosphate-limiting minimal salts medium, or human urine. Mutants complemented with the complete pst operon repressed AP synthesis in vitro and colonized the mouse bladder in numbers comparable to the wild-type strain HI4320. Therefore, the Pst transport system imparts a significant in vivo advantage to wild-type P. mirabilis that is not required for in vitro growth. Thus, the Pst transporter has satisfied molecular Koch's postulates as a virulence factor in the pathogenesis of urinary tract infection caused by P. mirabilis .en_US
dc.format.extent297665 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2008 Federation of European Microbiological Societiesen_US
dc.subject.otherProteus Mirabilisen_US
dc.subject.otherUrinary Tract Infectionen_US
dc.subject.otherVirulenceen_US
dc.subject.otherPhosphateen_US
dc.titleThe high-affinity phosphate transporter Pst is a virulence factor for Proteus mirabilis during complicated urinary tract infectionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA ; anden_US
dc.contributor.affiliationotherDepartment of Microbiology and Immunology, School of Medicine, University of Maryland – Baltimore, Baltimore, MD, USA ;en_US
dc.contributor.affiliationotherDepartment of Biomedical Sciences, Dental School, University of Maryland – Baltimore, Baltimore, MD, USAen_US
dc.identifier.pmid18194341en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72722/1/j.1574-695X.2007.00358.x.pdf
dc.identifier.doi10.1111/j.1574-695X.2007.00358.xen_US
dc.identifier.sourceFEMS Immunology & Medical Microbiologyen_US
dc.identifier.citedreferenceAguena M, Yagil E & Spira B ( 2002 ) Transcriptional analysis of the pst operon of Escherichia coli. Mol Genet Genomics 268: 518 – 524.en_US
dc.identifier.citedreferenceAkiyama M, Crooke E & Kornberg A ( 1992 ) The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein. J Biol Chem 267: 22556 – 22561.en_US
dc.identifier.citedreferenceAmemura M, Shinagawa H, Makino K, Otsuji N & Nakata A ( 1982 ) Cloning of and complementation tests with alkaline phosphatase regulatory genes ( phoS and phoT ) of Escherichia coli. J Bacteriol 152: 692 – 701.en_US
dc.identifier.citedreferenceAmemura M, Makino K, Shinagawa H, Kobayashi A & Nakata A ( 1985 ) Nucleotide sequence of the genes involved in phosphate transport and regulation of the phosphate regulon in Escherichia coli. J Mol Biol 184: 241 – 250.en_US
dc.identifier.citedreferenceAmes GF ( 1986 ) Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem 55: 397 – 425.en_US
dc.identifier.citedreferenceBelas R ( 1996 ) Proteus mirabilis swarmer cell differentiation and urinary tract infection. Urinary Tract Infections: Molecular Pathogenesis and Clinical Management ( Mobley HL & Warren JW, eds), pp. 271 – 298. ASM Press, Washington DC.en_US
dc.identifier.citedreferenceBelas R, Erskine D & Flaherty D ( 1991 ) Transposon mutagenesis in Proteus mirabilis. J Bacteriol 173: 6289 – 6293.en_US
dc.identifier.citedreferenceBrickman E & Beckwith J ( 1975 ) Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and phi80 transducing phages. J Mol Biol 96: 307 – 316.en_US
dc.identifier.citedreferenceBuckles EL, Wang X, Lockatell CV, Johnson DE & Donnenberg MS ( 2006 ) PhoU enhances the ability of extraintestinal pathogenic Escherichia coli strain CFT073 to colonize the murine urinary tract. Microbiology 152: 153 – 160.en_US
dc.identifier.citedreferenceBurall LS, Harro JM, Li X, Lockatell CV, Himpsl SD, Hebel JR, Johnson DE & Mobley HL ( 2004 ) Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun 72: 2922 – 2938.en_US
dc.identifier.citedreferenceCserzo M, Wallin E, Simon I, von Heijne G & Elofsson A ( 1997 ) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10: 673 – 676.en_US
dc.identifier.citedreferenceDaigle F, Fairbrother JM & Harel J ( 1995 ) Identification of a mutation in the pst-phoU operon that reduces pathogenicity of an Escherichia coli strain causing septicemia in pigs. Infect Immun 63: 4924 – 4927.en_US
dc.identifier.citedreferenceDanhorn T, Hentzer M, Givskov M, Parsek MR & Fuqua C ( 2004 ) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. J Bacteriol 186: 4492 – 4501.en_US
dc.identifier.citedreferenceGardy JL, Spencer C, Wang K et al. ( 2003 ) PSORT-B: improving protein subcellular localization prediction for gram-negative bacteria. Nucleic Acids Res 31: 3613 – 3617.en_US
dc.identifier.citedreferenceHagberg L, Engberg I, Freter R, Lam J, Olling S & Svanborg Eden C ( 1983 ) Ascending, unobstructed urinary tract infection in mice caused by pyelonephritogenic Escherichia coli of human origin. Infect Immun 40: 273 – 283.en_US
dc.identifier.citedreferenceHarris RM, Webb DC, Howitt SM & Cox GB ( 2001 ) Characterization of PitA and PitB from Escherichia coli. J Bacteriol 183: 5008 – 5014.en_US
dc.identifier.citedreferenceHiratsu K, Nakata A, Shinagawa H & Makino K ( 1995 ) Autophosphorylation and activation of transcriptional activator PhoB of Escherichia coli by acetyl phosphate in vitro. Gene 161: 7 – 10.en_US
dc.identifier.citedreferenceIshige T, Krause M, Bott M, Wendisch VF & Sahm H ( 2003 ) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185: 4519 – 4529.en_US
dc.identifier.citedreferenceJansen AM, Lockatell CV, Johnson DE & Mobley HL ( 2003 ) Visualization of Proteus mirabilis morphotypes in the urinary tract: the elongated swarmer cell is rarely observed in ascending urinary tract infection. Infect Immun 71: 3607 – 3613.en_US
dc.identifier.citedreferenceJohnson DE, Lockatell CV, Hall-Craigs M, Mobley HL & Warren JW ( 1987 ) Uropathogenicity in rats and mice of Providencia stuartii from long-term catheterized patients. J Urol 138: 632 – 635.en_US
dc.identifier.citedreferenceKim SK, Makino K, Amemura M, Shinagawa H & Nakata A ( 1993 ) Molecular analysis of the phoH gene, belonging to the phosphate regulon in Escherichia coli. J Bacteriol 175: 1316 – 1324.en_US
dc.identifier.citedreferenceKimura S, Makino K, Shinagawa H, Amemura M & Nakata A ( 1989 ) Regulation of the phosphate regulon of Escherichia coli: characterization of the promoter of the pstS gene. Mol Gen Genet 215: 374 – 380.en_US
dc.identifier.citedreferenceKusaka K, Shibata K, Kuroda A, Kato J & Ohtake H ( 1997 ) Isolation and characterization of Enterobacter cloacae mutants which are defective in chemotaxis toward inorganic phosphate. J Bacteriol 179: 6192 – 6195.en_US
dc.identifier.citedreferenceLamarche MG, Dozois CM, Daigle F, Caza M, Curtiss III R, Dubreuil JD & Harel J ( 2005 ) Inactivation of the pst system reduces the virulence of an avian pathogenic Escherichia coli O78 strain. Infect Immun 73: 4138 – 4145.en_US
dc.identifier.citedreferenceLucas RL, Lostroh CP, DiRusso CC, Spector MP, Wanner BL & Lee CA ( 2000 ) Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar typhimurium. J Bacteriol 182: 1872 – 1882.en_US
dc.identifier.citedreferenceMakino K, Shinagawa H & Nakata A ( 1984 ) Cloning and characterization of the alkaline phosphatase positive regulatory gene ( phoM ) of Escherichia coli. Mol Gen Genet 195: 381 – 390.en_US
dc.identifier.citedreferenceMakino K, Shinagawa H, Amemura M & Nakata A ( 1986 ) Nucleotide sequence of the phoB gene, the positive regulatory gene for the phosphate regulon of Escherichia coli K-12. J Mol Biol 190: 37 – 44.en_US
dc.identifier.citedreferenceMathew JA, Tan YP, Srinivasa Rao PS, Lim TM & Leung KY ( 2001 ) Edwardsiella tarda mutants defective in siderophore production, motility, serum resistance and catalase activity. Microbiology 147: 449 – 457.en_US
dc.identifier.citedreferenceMiller JH ( 1972 ) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.en_US
dc.identifier.citedreferenceMobley HL ( 1996 ) Virulence of Proteus mirabilis. Urinary Tract Infections: Molecular Pathogenesis and Clinical Management ( Mobley HL & Warren JW, eds), pp. 245 – 269. ASM Press, Washington DC.en_US
dc.identifier.citedreferenceMobley HL & Warren JW ( 1987 ) Urease-positive bacteriuria and obstruction of long-term urinary catheters. J Clin Microbiol 25: 2216 – 2217.en_US
dc.identifier.citedreferenceMobley HL, Island MD & Massad G ( 1994 ) Virulence determinants of uropathogenic Escherichia coli and Proteus mirabilis. Kidney Intl 46: S129 – S136.en_US
dc.identifier.citedreferenceMonds RD, Silby MW & Mahanty HK ( 2001 ) Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA147-2. Mol Microbiol 42: 415 – 426.en_US
dc.identifier.citedreferenceMorris NS, Stickler DJ & Winters C ( 1997 ) Which indwelling urethral catheters resist encrustation by Proteus mirabilis biofilms? Br J Urol 80: 58 – 63.en_US
dc.identifier.citedreferenceMusher DM, Griffith DP, Yawn D & Rossen RD ( 1975 ) Role of urease in pyelonephritis resulting from urinary tract infection with Proteus. J Infect Dis 131: 177 – 181.en_US
dc.identifier.citedreferenceOrihuela CJ, Mills J, Robb CW, Wilson CJ, Watson DA & Niesel DW ( 2001 ) Streptococcus pneumoniae PstS production is phosphate responsive and enhanced during growth in the murine peritoneal cavity. Infect Immun 69: 7565 – 7571.en_US
dc.identifier.citedreferencePeerbooms PG, Verweij AM & MacLaren DM ( 1984 ) Vero cell invasiveness of Proteus mirabilis. Infect Immun 43: 1068 – 1071.en_US
dc.identifier.citedreferencePeirs P, Lefevre P, Boarbi S, Wang XM, Denis O, Braibant M, Pethe K, Locht C, Huygen K & Content J ( 2005 ) Mycobacterium tuberculosis with disruption in genes encoding the phosphate binding proteins PstS1 and PstS2 is deficient in phosphate uptake and demonstrates reduced in vivo virulence. Infect Immun 73: 1898 – 1902.en_US
dc.identifier.citedreferencePribnow D ( 1975 ) Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc Natl Acad Sci USA 72: 784 – 788.en_US
dc.identifier.citedreferenceRosenberg H, Gerdes RG & Chegwidden K ( 1977 ) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131: 505 – 511.en_US
dc.identifier.citedreferenceRunyen-Janecky LJ, Boyle AM, Kizzee A, Liefer L & Payne SM ( 2005 ) Role of the Pst system in plaque formation by the intracellular pathogen Shigella flexneri. Infect Immun 73: 1404 – 1410.en_US
dc.identifier.citedreferenceShine J & Dalgarno L ( 1974 ) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71: 1342 – 1346.en_US
dc.identifier.citedreferenceSinai AP & Bavoil PM ( 1993 ) Hyper-invasive mutants define a novel Pho-regulated invasion pathway in Escherichia coli. Mol Microbiol 10: 1125 – 1137.en_US
dc.identifier.citedreferenceSoualhine H, Brochu V, Menard F, Papadopoulou B, Weiss K, Bergeron MG, Legare D, Drummelsmith J & Ouellette M ( 2005 ) A proteomic analysis of penicillin resistance in Streptococcus pneumoniae reveals a novel role for PstS, a subunit of the phosphate ABC transporter. Mol Microbiol 58: 1430 – 1440.en_US
dc.identifier.citedreferenceStickler DJ, King JB, Winters C & Morris SL ( 1993 ) Blockage of urethral catheters by bacterial biofilms. J Infect 27: 133 – 135.en_US
dc.identifier.citedreferenceTorriani-Gorini A ( 1994 ) Introduction: the pho regulon of Escherichia coli. Phosphate in Microbiology: Cellular and Molecular Biology ( Silver S, Torriani-Gorini A & Yagil E, eds), pp. 1 – 4. ASM Press, Washington DC.en_US
dc.identifier.citedreferenceVanBogelen RA, Abshire KZ, Pertsemlidis A, Clark RL & Neidhardt FC ( 1996 ) Gene-protein database of Escherichia coli K-12. Escherichia Coli and Salmonella: Cellular and Molecular Biology ( Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M & Umbarger HE, eds), pp. 2067 – 2117. ASM Press, Washington DC.en_US
dc.identifier.citedreferencevan Veen HW, Abee T, Kortstee GJ, Konings WN & Zehnder AJ ( 1994 ) Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli. Biochemistry 33: 1766 – 1770.en_US
dc.identifier.citedreferenceWalker KE, Moghaddame-Jafari S, Lockatell CV, Johnson D & Belas R ( 1999 ) ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol 32: 825 – 836.en_US
dc.identifier.citedreferenceWanner BL ( 1986 ) Novel regulatory mutants of the phosphate regulon in Escherichia coli K-12. J Mol Biol 191: 39 – 58.en_US
dc.identifier.citedreferenceWanner BL ( 1993 ) Gene regulation by phosphate in enteric bacteria. J Cell Biochem 51: 47 – 54.en_US
dc.identifier.citedreferenceWanner BL ( 1996 ) Phosphorus assimilation and control of the phosphate regulon. Escherichia coli and Salmonella: Cellular and Molecular Biology ( Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanok B, Reznikoff WS, Riley M, Schaechter M & Umbarger HE, eds), pp. 1357 – 1381. ASM Press, Washington, DC.en_US
dc.identifier.citedreferenceWanner BL & Boline JA ( 1990 ) Mapping and molecular cloning of the phn ( psi D) locus for phosphonate utilization in Escherichia coli. J Bacteriol 172: 1186 – 1196.en_US
dc.identifier.citedreferenceWanner BL & Wilmes-Riesenberg MR ( 1992 ) Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli. J Bacteriol 174: 2124 – 2130.en_US
dc.identifier.citedreferenceWarren JW, Tenney JH, Hoopes JM, Muncie HL & Anthony WC ( 1982 ) A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis 146: 719 – 723.en_US
dc.identifier.citedreferenceWillsky GR & Malamy MH ( 1980 ) Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 144: 356 – 365.en_US
dc.identifier.citedreferenceWillsky GR, Bennett RL & Malamy MH ( 1973 ) Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J Bacteriol 113: 529 – 539.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.