Show simple item record

Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells

dc.contributor.authorVermeer, Joop E. M.en_US
dc.contributor.authorThole, Julie M.en_US
dc.contributor.authorGoedhart, Joachimen_US
dc.contributor.authorNielsen, Eriken_US
dc.contributor.authorMunnik, Teunen_US
dc.contributor.authorGadella, Theodorus W. J. Jr.en_US
dc.date.accessioned2010-06-01T19:37:29Z
dc.date.available2010-06-01T19:37:29Z
dc.date.issued2009-01en_US
dc.identifier.citationVermeer, Joop E.M.; Thole, Julie M.; Goedhart, Joachim; Nielsen, Erik; Munnik, Teun; Gadella Jr, Theodorus W.J. (2009). "Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells." The Plant Journal 57(2): 356-372. <http://hdl.handle.net/2027.42/72760>en_US
dc.identifier.issn0960-7412en_US
dc.identifier.issn1365-313Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72760
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18785997&dopt=citationen_US
dc.format.extent2165321 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 Blackwell Publishing Ltd and the Society for Experimental Biologyen_US
dc.subject.otherPhosphoinositidesen_US
dc.subject.otherGFPen_US
dc.subject.otherMembrane Traffickingen_US
dc.subject.otherMicroscopyen_US
dc.subject.otherLipid Binding Domainen_US
dc.titleImaging phosphatidylinositol 4-phosphate dynamics in living plant cellsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Molecular Cytology, Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlandsen_US
dc.contributor.affiliationotherDepartment of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlandsen_US
dc.contributor.affiliationotherDepartment of Biology, Washington University, One Brookings Drive, St Louis, MO 63130, USAen_US
dc.identifier.pmid18785997en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72760/1/j.1365-313X.2008.03679.x.pdf
dc.identifier.doi10.1111/j.1365-313X.2008.03679.xen_US
dc.identifier.sourceThe Plant Journalen_US
dc.identifier.citedreferenceArcaro, A. and Wymann, M.P. ( 1993 ) Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem. J. 296, 297 – 301.en_US
dc.identifier.citedreferenceAudhya, A. and Emr, S.D. ( 2002 ) Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev. Cell. 2, 593 – 605.en_US
dc.identifier.citedreferenceAudhya, A., Foti, M. and Emr, S.D. ( 2000 ) Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol. Biol. Cell. 11, 2673 – 2689.en_US
dc.identifier.citedreferenceBalla, T. ( 1998 ) Phosphatidylinositol 4-kinases. Biochim. Biophys. Acta. 1436, 69 – 85.en_US
dc.identifier.citedreferenceBalla, T. ( 2007 ) Imaging and manipulating phosphoinositides in living cells. J. Physiol. 582, 927 – 937.en_US
dc.identifier.citedreferenceBalla, A. and Balla, T. ( 2006 ) Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol. 16, 351 – 361.en_US
dc.identifier.citedreferenceBalla, A., Tuymetova, G., Barshishat, M., Geiszt, M. and Balla, T. ( 2002 ) Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments. J. Biol. Chem. 277, 20041 – 20050.en_US
dc.identifier.citedreferenceBalla, A., Tuymetova, G., Tsiomenko, A., Varnai, P. and Balla, T. ( 2005 ) A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol. Biol. Cell. 16, 1282 – 1295.en_US
dc.identifier.citedreferenceBalla, A., Kim, Y.J., Varnai, P., Szentpetery, Z., Knight, Z., Shokat, K.M. and Balla, T. ( 2008 ) Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIα. Mol. Biol. Cell. 19, 711 – 721.en_US
dc.identifier.citedreferenceBoevink, P., Oparka, K., Santa Cruz, S., Martin, B., Betteridge, A. and Hawes, C. ( 1998 ) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J. 15, 441 – 447.en_US
dc.identifier.citedreferenceBoisson-Dernier, A., Chabaud, M., Garcia, F., Becard, G., Rosenberg, C. and Barker, D.G. ( 2001 ) Agrobacterium rhizogenes -transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol. Plant–Microbe Interact. 14, 695 – 700.en_US
dc.identifier.citedreferenceBolte, S., Talbot, C., Boutte, Y., Catrice, O., Read, N.D. and Satiat-Jeunemaitre, B. ( 2004 ) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J. Microsc. 214, 159 – 173.en_US
dc.identifier.citedreferenceChang, F.S., Han, G.S., Carman, G.M. and Blumer, K.J. ( 2005 ) A WASp-binding type II phosphatidylinositol 4-kinase required for actin polymerization-driven endosome motility. J. Cell Biol. 171, 133 – 142.en_US
dc.identifier.citedreferenceClough, S.J. and Bent, A.F. ( 1998 ) Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana. Plant J. 16, 735 – 743.en_US
dc.identifier.citedreferenceCorvera, S., D’Arrigo, A. and Stenmark, H. ( 1999 ) Phosphoinositides in membrane traffic. Curr. Opin. Cell Biol. 11, 460 – 465.en_US
dc.identifier.citedreferenceDhonukshe, P., Baluska, F., Schlicht, M., Hlavacka, A., Samaj, J., Friml, J. and Gadella, T.W. Jr ( 2006 ) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev. Cell. 10, 137 – 150.en_US
dc.identifier.citedreferenceDowd, P.E., Coursol, S., Skirpan, A.L., Kao, T.H. and Gilroy, S. ( 2006 ) Petunia phospholipase c1 is involved in pollen tube growth. Plant Cell, 18, 1438 – 1453.en_US
dc.identifier.citedreferenceDowler, S., Currie, R.A., Campbell, D.G., Deak, M., Kular, G., Downes, C.P. and Alessi, D.R. ( 2000 ) Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem. J. 351, 19 – 31.en_US
dc.identifier.citedreferenceGalvÃo, R.M., Kota, U., Soderblom, E.J., Goshe, M.B. and Boss, W.F. ( 2008 ) Characterization of a new family of protein kinases from Arabidopsis containing phosphoinositide 3/4-kinase and ubiquitin-like domains. Biochem. J. 409, 117 – 127.en_US
dc.identifier.citedreferenceGamper, N. and Shapiro, M.S. ( 2007 ) Regulation of ion transport proteins by membrane phosphoinositides. Nature Rev. 8, 921 – 934.en_US
dc.identifier.citedreferenceGeldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., Ueda, T., Nakano, A. and Jurgens, G. ( 2003 ) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell, 112, 219 – 230.en_US
dc.identifier.citedreferenceGodi, A., Pertile, P., Meyers, R., Marra, P., Di Tullio, G., Iurisci, C., Luini, A., Corda, D. and De Matteis, M.A. ( 1999 ) ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P 2 on the Golgi complex. Nature Cell Biol. 1, 280 – 287.en_US
dc.identifier.citedreferenceGodi, A., Di Campli, A., Konstantakopoulos, A., Di Tullio, G., Alessi, D.R., Kular, G.S., Daniele, T., Marra, P., Lucocq, J.M. and De Matteis, M.A. ( 2004 ) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nature Cell Biol. 6, 393 – 404.en_US
dc.identifier.citedreferenceGozani, O., Karuman, P., Jones, D.R. et al. ( 2003 ) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell, 114, 99 – 111.en_US
dc.identifier.citedreferenceHama, H., Schnieders, E.A., Thorner, J., Takemoto, J.Y. and DeWald, D.B. ( 1999 ) Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274, 34294 – 34300.en_US
dc.identifier.citedreferenceHan, G.S., Audhya, A., Markley, D.J., Emr, S.D. and Carman, G.M. ( 2002 ) The Saccharomyces cerevisiae LSB6 gene encodes phosphatidylinositol 4-kinase activity. J. Biol. Chem. 277, 47709 – 47718.en_US
dc.identifier.citedreferenceHelling, D., Possart, A., Cottier, S., Klahre, U. and Kost, B. ( 2006 ) Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell, 18, 3519 – 3534.en_US
dc.identifier.citedreferenceHilgemann, D.W., Feng, S. and Nasuhoglu, C. ( 2001 ) The complex and intriguing lives of PIP2 with ion channels and transporters. Sci. STKE. 2001, RE19.en_US
dc.identifier.citedreferenceHilpela, P., Vartiainen, M.K. and Lappalainen, P. ( 2004 ) Regulation of the actin cytoskeleton by PI(4,5)P 2 and PI(3,4,5)P 3. Curr. Topics Microbiol. Immunol. 282, 117 – 163.en_US
dc.identifier.citedreferenceHuang, C.L. ( 2007 ) Complex roles of PIP2 in the regulation of ion channels and transporters. Am. J. Physiol. 293, F1761 – F1765.en_US
dc.identifier.citedreferenceIves, E.B., Nichols, J., Wente, S.R. and York, J.D. ( 2000 ) Biochemical and functional characterization of inositol 1,3,4,5,6-pentakisphosphate 2-kinases. J. Biol. Chem. 275, 36575 – 36583.en_US
dc.identifier.citedreferenceKim, D.H., Eu, Y.J., Yoo, C.M., Kim, Y.W., Pih, K.T., Jin, J.B., Kim, S.J., Stenmark, H. and Hwang, I. ( 2001 ) Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell, 13, 287 – 301.en_US
dc.identifier.citedreferenceKost, B., Lemichez, E., Spielhofer, P., Hong, Y., Tolias, K., Carpenter, C. and Chua, N.H. ( 1999 ) Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J. Cell Biol. 145, 317 – 330.en_US
dc.identifier.citedreferenceKrinke, O., Ruelland, E., Valentova, O., Vergnolle, C., Renou, J.P., Taconnat, L., Flemr, M., Burketova, L. and Zachowski, A. ( 2007 ) Phosphatidylinositol 4-kinase activation is an early response to salicylic acid in Arabidopsis suspension cells. Plant Physiol. 144, 1347 – 1359.en_US
dc.identifier.citedreferenceKusano, H., Testerink, C., Vermeer, J.E., Tsuge, T., Shimada, H., Oka, A., Munnik, T. and Aoyama, T. ( 2008 ) The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell, 20, 367 – 380.en_US
dc.identifier.citedreferenceLee, G.J., Sohn, E.J., Lee, M.H. and Hwang, I. ( 2004 ) The Arabidopsis rab5 homologs rha1 and ara7 localize to the prevacuolar compartment. Plant Cell Physiol. 45, 1211 – 1220.en_US
dc.identifier.citedreferencevan Leeuwen, W., ÖkrÉsz, L., BÖgre, L. and Munnik, T. ( 2004 ) Learning the lipid language of plant signalling. Trends Plant Sci. 9, 378 – 384.en_US
dc.identifier.citedreferencevan Leeuwen, W., Vermeer, J.E., Gadella, T.W. Jr and Munnik, T. ( 2007 ) Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. Plant J. 52, 1014 – 1026.en_US
dc.identifier.citedreferenceLemtiri-Chlieh, F., MacRobbie, E.A., Webb, A.A., Manison, N.F., Brownlee, C., Skepper, J.N., Chen, J., Prestwich, G.D. and Brearley, C.A. ( 2003 ) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc. Natl Acad. Sci. U.S.A. 100, 10091 – 10095.en_US
dc.identifier.citedreferenceLevine, T.P. and Munro, S. ( 1998 ) The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Curr. Biol. 8, 729 – 739.en_US
dc.identifier.citedreferenceLevine, T.P. and Munro, S. ( 2001 ) Dual targeting of Osh1p, a yeast homologue of oxysterol-binding protein, to both the Golgi and the nucleus–vacuole junction. Mol. Biol. Cell. 12, 1633 – 1644.en_US
dc.identifier.citedreferenceLevine, T.P. and Munro, S. ( 2002 ) Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr. Biol. 12, 695 – 704.en_US
dc.identifier.citedreferenceLi, X., Rivas, M.P., Fang, M., Marchena, J., Mehrotra, B., Chaudhary, A., Feng, L., Prestwich, G.D. and Bankaitis, V.A. ( 2002 ) Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex. J. Cell Biol. 157, 63 – 77.en_US
dc.identifier.citedreferenceLimpens, E., Ramos, J., Franken, C., Raz, V., Compaan, B., Franssen, H., Bisseling, T. and Geurts, R. ( 2004 ) RNA interference in Agrobacterium rhizogenes -transformed roots of Arabidopsis and Medicago truncatula. J. Exp. Bot. 55, 983 – 992.en_US
dc.identifier.citedreferenceMatsuoka, K., Bassham, D.C., Raikhel, N.V. and Nakamura, K. ( 1995 ) Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J. Cell Biol. 130, 1307 – 1318.en_US
dc.identifier.citedreferenceMcLaughlin, S., Wang, J., Gambhir, A. and Murray, D. ( 2002 ) PIP(2) and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151 – 175.en_US
dc.identifier.citedreferenceMeijer, H.J. and Munnik, T. ( 2003 ) Phospholipid-based signaling in plants. Annu. Rev. Plant Biol. 54, 265 – 306.en_US
dc.identifier.citedreferenceMeijer, H.J., Berrie, C.P., Iurisci, C., Divecha, N., Musgrave, A. and Munnik, T. ( 2001 ) Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (PtdIns5P), and its accumulation upon osmotic stress. Biochem. J. 360, 491 – 498.en_US
dc.identifier.citedreferenceMirabella, R., Franken, C., van der Krogt, G.N., Bisseling, T. and Geurts, R. ( 2004 ) Use of the fluorescent timer DsRED-E5 as reporter to monitor dynamics of gene activity in plants. Plant Physiol. 135, 1879 – 1887.en_US
dc.identifier.citedreferenceMueller-Roeber, B. and Pical, C. ( 2002 ) Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol. 130, 22 – 46.en_US
dc.identifier.citedreferenceMunnik, T., Musgrave, A. and de Vrije, T. ( 1994a ) Rapid turnover of polyphosphoinositides in carnation flower petals. Planta, 193, 89 – 98.en_US
dc.identifier.citedreferenceMunnik, T., Irvine, R.F. and Musgrave, A. ( 1994b ) Rapid turnover of phosphatidylinositol 3-phosphate in the green alga Chlamydomonas eugametos: signs of a phosphatidylinositide 3-kinase signalling pathway in lower plants? Biochem. J. 298, 269 – 273.en_US
dc.identifier.citedreferenceMunnik, T., Irvine, R.F. and Musgrave, A. ( 1998 ) Phospholipid signalling in plants. Biochim. Biophys. Acta. 1389, 222 – 272.en_US
dc.identifier.citedreferenceOdom, A.R., Stahlberg, A., Wente, S.R. and York, J.D. ( 2000 ) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science, 287, 2026 – 2029.en_US
dc.identifier.citedreferenceOkpodu, C.M., Gross, W., Burkhart, W. and Boss, W.F. ( 1995 ) Purification and characterization of a soluble phosphatidylinositol 4-kinase from carrot suspension culture cells. Plant Physiol. 107, 491 – 500.en_US
dc.identifier.citedreferencePark, K.Y., Jung, J.Y., Park, J., Hwang, J.U., Kim, Y.W., Hwang, I. and Lee, Y. ( 2003 ) A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. Plant Physiol. 132, 92 – 98.en_US
dc.identifier.citedreferencePendaries, C., Tronchere, H., Arbibe, L., Mounier, J., Gozani, O., Cantley, L., Fry, M.J., Gaits-Iacovoni, F., Sansonetti, P.J. and Payrastre, B. ( 2006 ) PtdIns(5)P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J. 25, 1024 – 1034.en_US
dc.identifier.citedreferencePerera, N.M., Michell, R.H. and Dove, S.K. ( 2004 ) Hypo-osmotic stress activates Plc1p-dependent phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol hexakisphosphate accumulation in yeast. J. Biol. Chem. 279, 5216 – 5226.en_US
dc.identifier.citedreferencePreuss, M.L., Schmitz, A.J., Thole, J.M., Bonner, H.K.S., Otegui, M.S. and Nielsen, E. ( 2006 ) A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana. J. Cell Biol. 172, 991 – 998.en_US
dc.identifier.citedreferenceRitzenthaler, C., Nebenfuhr, A., Movafeghi, A., Stussi-Garaud, C., Behnia, L., Pimpl, P., Staehelin, L.A. and Robinson, D.G. ( 2002 ) Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell, 14, 237 – 261.en_US
dc.identifier.citedreferenceRoy, A. and Levine, T.P. ( 2004 ) Multiple pools of phosphatidylinositol 4-phosphate detected using the pleckstrin homology domain of Osh2p. J. Biol. Chem. 279, 44683 – 44689.en_US
dc.identifier.citedreferenceShelton, S.N., Barylko, B., Binns, D.D., Horazdovsky, B.F., Albanesi, J.P. and Goodman, J.M. ( 2003 ) Saccharomyces cerevisiae contains a type II phosphoinositide 4-kinase. Biochem. J. 371, 533 – 540.en_US
dc.identifier.citedreferenceShisheva, A. ( 2008 ) PIKfyve: Partners, significance, debates and paradoxes. Cell Biol. Int. 32, 591 – 604.en_US
dc.identifier.citedreferenceSimonsen, A., Wurmser, A.E., Emr, S.D. and Stenmark, H. ( 2001 ) The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13, 485 – 492.en_US
dc.identifier.citedreferenceStenmark, H. and Gillooly, D.J. ( 2001 ) Intracellular trafficking and turnover of phosphatidylinositol 3-phosphate. Semin. Cell Dev. Biol. 12, 193 – 199.en_US
dc.identifier.citedreferenceStenzel, I., Ischebeck, T., Konig, S., Holubowska, A., Sporysz, M., Hause, B. and Heilmann, I. ( 2008 ) The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell, 20, 124 – 141.en_US
dc.identifier.citedreferenceStephens, L., Cooke, F.T., Walters, R., Jackson, T., Volinia, S., Gout, I., Waterfield, M.D. and Hawkins, P.T. ( 1994 ) Characterization of a phosphatidylinositol-specific phosphoinositide 3-kinase from mammalian cells. Curr. Biol. 4, 203 – 214.en_US
dc.identifier.citedreferenceStevenson, J.M., Perera, I.Y. and Boss, W.F. ( 1998 ) A phosphatidylinositol 4-kinase pleckstrin homology domain that binds phosphatidylinositol 4-monophosphate. J. Biol. Chem. 273, 22761 – 22767.en_US
dc.identifier.citedreferenceStevenson-Paulik, J., Love, J. and Boss, W.F. ( 2003 ) Differential regulation of two Arabidopsis type III phosphatidylinositol 4-kinase isoforms. A regulatory role for the pleckstrin homology domain. Plant Physiol. 132, 1053 – 1064.en_US
dc.identifier.citedreferenceStrahl, T., Hama, H., DeWald, D.B. and Thorner, J. ( 2005 ) Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J. Cell Biol. 171, 967 – 979.en_US
dc.identifier.citedreferenceThole, J.M., Vermeer, J.E., Zhang, Y., Gadella, T.W. Jr and Nielsen, E. ( 2008 ) ROOT HAIR DEFECTIVE4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell, 20, 381 – 395.en_US
dc.identifier.citedreferenceUeda, T., Uemura, T., Sato, M.H. and Nakano, A. ( 2004 ) Functional differentiation of endosomes in Arabidopsis cells. Plant J. 40, 783 – 789.en_US
dc.identifier.citedreferenceVermeer, J.E.M. ( 2006 ) Visualisation of polyphosphoinositide dynamics in living plant cells. PhD thesis, Amsterdam: University of Amsterdam, 178 pp.en_US
dc.identifier.citedreferenceVermeer, J.E., Van Munster, E.B., Vischer, N.O. and Gadella, T.W. Jr ( 2004 ) Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy. J. Microsc. 214, 190 – 200.en_US
dc.identifier.citedreferenceVermeer, J.E., van Leeuwen, W., Tobena-Santamaria, R., Laxalt, A.M., Jones, D.R., Divecha, N., Gadella, T.W. Jr and Munnik, T. ( 2006 ) Visualization of PtdIns3P dynamics in living plant cells. Plant J. 47, 687 – 700.en_US
dc.identifier.citedreferenceVincent, P., Chua, M., Nogue, F., Fairbrother, A., Mekeel, H., Xu, Y., Allen, N., Bibikova, T.N., Gilroy, S. and Bankaitis, V.A. ( 2005 ) A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J. Cell Biol. 168, 801 – 812.en_US
dc.identifier.citedreferenceVoigt, B., Timmers, A.C., Samaj, J. et al. ( 2005 ) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur. J. Cell Biol. 84, 609 – 621.en_US
dc.identifier.citedreferenceWalch-Solimena, C. and Novick, P. ( 1999 ) The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nature Cell Biol. 1, 523 – 525.en_US
dc.identifier.citedreferenceWeixel, K.M., Blumental-Perry, A., Watkins, S.C., Aridor, M. and Weisz, O.A. ( 2005 ) Distinct Golgi populations of phosphatidylinositol 4-phosphate regulated by phosphatidylinositol 4-kinases. J. Biol. Chem. 280, 10501 – 10508.en_US
dc.identifier.citedreferenceWiedemann, C., Schafer, T. and Burger, M.M. ( 1996 ) Chromaffin granule-associated phosphatidylinositol 4-kinase activity is required for stimulated secretion. EMBO J. 15, 2094 – 2101.en_US
dc.identifier.citedreferenceYang, W., Burkhart, W., Cavallius, J., Merrick, W.C. and Boss, W.F. ( 1993 ) Purification and characterization of a phosphatidylinositol 4-kinase activator in carrot cells. J. Biol. Chem. 268, 392 – 398.en_US
dc.identifier.citedreferenceYork, J.D., Odom, A.R., Murphy, R., Ives, E.B. and Wente, S.R. ( 1999 ) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science, 285, 96 – 100.en_US
dc.identifier.citedreferenceYork, J.D., Guo, S., Odom, A.R., Spiegelberg, B.D. and Stolz, L.E. ( 2001 ) An expanded view of inositol signaling. Adv. Enzyme Regul. 41, 57 – 71.en_US
dc.identifier.citedreferenceZonia, L. and Munnik, T. ( 2006 ) Cracking the green paradigm: functional coding of phosphoinositide signals in plant stress responses. Subcell. Biochem. 39, 207 – 237.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.