Show simple item record

Total Internal Reflection Fluorescence Microscopy in Cell Biology

dc.contributor.authorAxelrod, Danielen_US
dc.date.accessioned2010-06-01T19:38:39Z
dc.date.available2010-06-01T19:38:39Z
dc.date.issued2001-11en_US
dc.identifier.citationAxelrod, Daniel (2001). "Total Internal Reflection Fluorescence Microscopy in Cell Biology." Traffic 2(11): 764-774. <http://hdl.handle.net/2027.42/72779>en_US
dc.identifier.issn1398-9219en_US
dc.identifier.issn1600-0854en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72779
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11733042&dopt=citationen_US
dc.format.extent313791 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMunksgaard International Publishersen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rightsMunksgaarden_US
dc.subject.otherCell-substrate Contacten_US
dc.subject.otherEvanescenten_US
dc.subject.otherMembraneen_US
dc.subject.otherSecretionen_US
dc.subject.otherSurfaceen_US
dc.subject.otherOptical Sectionen_US
dc.titleTotal Internal Reflection Fluorescence Microscopy in Cell Biologyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics & Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109, USA,en_US
dc.identifier.pmid11733042en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72779/1/j.1600-0854.2001.21104.x.pdf
dc.identifier.doi10.1034/j.1600-0854.2001.21104.xen_US
dc.identifier.sourceTrafficen_US
dc.identifier.citedreferenceAxelrod D. Cell surface contacts illuminated by total internal reflection fluorescence. J Cell Biol 1981; 89: 141 – 145.en_US
dc.identifier.citedreferenceWeis RM, Balakrishnan K, Smith B, McConnell HM. Stimulation of fluorescence in a small contact region between rat basophil leukemia cells and planar lipid membrane targets by coherent evanescent radiation. J Biol Chem 1982; 257: 6440 – 6445.en_US
dc.identifier.citedreferenceGingell D, Heavens OS, Mellor JS. General electromagnetic theory of internal reflection fluorescence: the quantitative basis for mapping cell-substratum topography. J Cell Sci 1987; 87: 677 – 693.en_US
dc.identifier.citedreferenceTodd I, Mellor JS, Gingell D. Mapping of cell-glass contacts of Dictyostelium amoebae by total internal reflection aqueous fluorescence overcomes a basic ambiguity of interference reflection microscopy. J Cell Sci 1988; 89: 107 – 114.en_US
dc.identifier.citedreferenceLang T, Wacker I, Wunderlich I, Rohrbach A, Giese G, Soldati T, Almers W. Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells. Biophys J 2000; 78: 2863 – 2877.en_US
dc.identifier.citedreferenceVale RD, Funatsu T, Pierce DW, Romberg L, Harada Y, Yanagida T. Direct observation of single kinesin molecules moving along microtubules. Nature 1996; 380: 451 – 453.en_US
dc.identifier.citedreferenceKhan S, Pierce D, Vale RD. Interactions of the chemotaxis signal protein CheY with bacterial flagellar motors visualized by evanescent wave microscopy. Curr Biol 2000; 10: 927 – 930.en_US
dc.identifier.citedreferenceDickson RM, Norris DJ, Tzeng Y-L, Moerner WE. Three-dimensional imaging of single molecules solvated in pores of poly (acrylamide) gels. Science 1996; 274: 966 – 969.en_US
dc.identifier.citedreferenceDickson RM, Norris DJ, Moerner WE. Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis. Phys Rev Lett 1998; 81: 5322 – 5325.en_US
dc.identifier.citedreferenceSako Y, Miniguchi S, Yanagida T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nature Cell Biol 2000; 2: 168 – 172.en_US
dc.identifier.citedreferenceKnight AE & Molloy JE. Muscle, myosin and single molecules. In: Higgins, SJ Banting, G, eds. Molecular Motors. Essays in Biochemistry, Vol. 35. London: Portland Press; 2000. p. 200.en_US
dc.identifier.citedreferenceHa TJ, Ting AY, Liang J, Caldwell WB, Deniz AA, Chemla DS, Schultz PG, Weiss S. Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc Natl Acad Sci USA 1999; 96: 893 – 898.en_US
dc.identifier.citedreferenceStarr TE & Thompson NL. Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion. Biophys J 2001; 80: 1575 – 1584.en_US
dc.identifier.citedreferenceLang T, Wacker I, Steyer J, Kaether C, Wunderlich I, Soldati T, Gerdes H-H, Almers W. Ca 2+ - triggered peptide secretion neurotechnique in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron 1997; 18: 857 – 963.en_US
dc.identifier.citedreferenceSteyer JA & Almers W. Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. Biophys J 1999; 76: 2262 – 2271.en_US
dc.identifier.citedreferenceToomre D, Steyer JA, Keller P, Almers W, Simons K. Fusion of constitutive membrane traffic with the cell surface observed by evanescent wave microscopy. J Cell Biol 2000; 149: 33 – 40.en_US
dc.identifier.citedreferenceZenisek DP, Steyer JA, Almers W. Imaging exocytosis of single synaptic vesicles with evanescent field microscopy. Biophys J 2000; 78: 1538.en_US
dc.identifier.citedreferenceSteyer JA & Almers W. A real-time view of life within 100 nm of the plasma membrane. Nature Rev Mol Cell Biol 2001; 2: 268 – 275.en_US
dc.identifier.citedreferenceLang T, Bruns D, Wenzel D, Riedel D, Holroyd P, Thiele C, Jahn R. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 2001; 20: 2202 – 2213.en_US
dc.identifier.citedreferenceOheim M, Loerke D, Stuhmer W, Chow RH. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J 1998; 27: 83 – 98.en_US
dc.identifier.citedreferenceOheim M, Loerke D, Stuhmer W, Chow RH. Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles. Eur Biophys J 1999; 28: 91 – 101.en_US
dc.identifier.citedreferenceOheim M & Stuhmer W. Interaction of secretory organelles with the membrane. J Memb Biol 2000; 178: 163 – 173.en_US
dc.identifier.citedreferenceHan W, Ng Y-K, Axelrod D, Levitan ES. Neuronal peptide release is sustained by recruitment of rapidly diffusing secretory vesicles. Proc Natl Acad Sci USA 1999; 96: 14577 – 14582.en_US
dc.identifier.citedreferenceSchmoranzer J, Goulian M, Axelrod D, Simon SM. Imaging constitutive exocytosis with total internal reflection microscopy. J Cell Biol 2000; 149: 23 – 31.en_US
dc.identifier.citedreferenceJohns LM, Levitan ES, Shelden EA, Holz RW, Axelrod D. Restriction of secretory granule motion near the plasma membrane of chromaffin cells. J Cell Biol 2001; 153: 177 – 190.en_US
dc.identifier.citedreferenceTsuboi T, Zhao C, Terakawa S, Rutter GA. Simultaneous evanescent wave imaging of insulin vesicle membrane and cargo during a single exocytotic event. Curr Biol 2000; 10: 1307 – 1310.en_US
dc.identifier.citedreferenceTsuboi T, Kikuta T, Warashina A, Terakawa S. Protein kinase C-dependent supply of secretory granules to the plasma membrane. Biochem Biophys Res Comm 2001; 282: 621 – 628.en_US
dc.identifier.citedreferenceRohrbach A. Observing secretory granules with a multiangle evanescent wave microscope. Biophys J 2000; 78: 2641 – 2654.en_US
dc.identifier.citedreferenceToomre D & Manstein DJ. Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol 2001; 11: 298 – 303.en_US
dc.identifier.citedreferenceThompson NL, Burghardt TP, Axelrod D. Measuring surface dynamics of biomolecules by total internal reflection with photobleaching recovery or correlation spectroscopy. Biophys J 1981; 33: 435 – 454.en_US
dc.identifier.citedreferenceBurghardt TP & Axelrod D. Total internal reflection/fluorescence photobleaching recovery study of serum albumin adsorption dynamics. Biophys J 1981; 33: 455 – 468.en_US
dc.identifier.citedreferenceThompson NL & Axelrod D. Immunoglobulin surface binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy. Biophys J 1983; 43: 103 – 114.en_US
dc.identifier.citedreferenceHellen E & Axelrod D. Kinetics of epidermal growth factor/receptor binding on cells measured by total internal reflection/fluorescence recovery after photobleaching. J Fluor 1991; 1: 113 – 128.en_US
dc.identifier.citedreferenceFulbright RM & D. Axelrod. Dynamics of nonspecific adsorption of insulin to erythrocyte membrane. J Fluor 1993; 3: 1 – 16.en_US
dc.identifier.citedreferenceStout AL & Axelrod D. Reversible binding kinetics of a cytoskeletal protein at the erythrocyte submembrane. Biophys J 1994; 67: 1324 – 1334.en_US
dc.identifier.citedreferenceMcKiernan AM, MacDonald RC, MacDonald RI, Axelrod D. Cytoskeletal protein binding kinetics at planar phospholipid membranes. Biophys J 1997; 73: 1987 – 1998.en_US
dc.identifier.citedreferenceSund SE & Axelrod D. Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching. Biophys J 2000; 79: 1655 – 1669.en_US
dc.identifier.citedreferenceKalb E, Engel J, Tamm LK. Binding of proteins to specific target sites in membranes measured by total internal reflection fluorescence microscopy. Biochemistry 1990; 29: 1607 – 1613.en_US
dc.identifier.citedreferenceGilmanshin R, Creutz CE, Tamm LK. Annexin IV reduces the rate of lateral lipid diffusion and changes the fluid phase structure of the lipid bilayer when it binds to negatively charged membranes in the presence of calcium. Biochemistry 1994; 33: 8225 – 8832.en_US
dc.identifier.citedreferenceHinterdorfer P, Baber G, Tamm LK. Reconstitution of membrane fusion sites. A total internal reflection fluorescence microscopy study of influenza hemagglutinin-mediated membrane fusion. J Biol Chem 1994; 269: 20360 – 20368.en_US
dc.identifier.citedreferenceLagerholm BC, Starr TE, Volovyk ZN, Thompson NL. Rebinding of IgE Fabs at haptenated planar membranes: measurement by total internal reflection with fluorescence photobleaching recovery. Biochemistry 2000; 39: 2042 – 2051.en_US
dc.identifier.citedreferenceTilton RD, Gast AP, Robertson CR. Surface diffusion of interacting proteins. Effect of concentration on the lateral mobility of adsorbed bovine serum albumin. Biophys J 1990; 58: 1321 – 1326.en_US
dc.identifier.citedreferenceSund SE, Swanson JA, Axelrod D. Cell membrane orientation visualized by polarized total internal reflection fluorescence. Biophys J 1999; 77: 2266 – 2283.en_US
dc.identifier.citedreferenceMathur AB, Truskey GA, Reichert WM. Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys J 2000; 78: 1725 – 1735.en_US
dc.identifier.citedreferenceWang MD & Axelrod D. Time-lapse total internal reflection fluorescence video of acetylcholine receptor cluster formation on myotubes. Dev Dyn 1994; 201: 29 – 40.en_US
dc.identifier.citedreferenceOmann GM & Axelrod D. Membrane proximal calcium transients in stimulated neutrophils seen by total internal reflection fluorescence. Biophys J 1996; 71: 2885 – 2891.en_US
dc.identifier.citedreferenceHellen EH & Axelrod D. Fluorescence emission at dielectric and metal–film interfaces. J Opt Soc Am B 1987; 4: 337 – 350.en_US
dc.identifier.citedreferenceMertz J. Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description. J Opt Soc Am B 2000; 17: 1906 – 1913.en_US
dc.identifier.citedreferenceStout AL & Axelrod D. Evanescent field excitation of fluorescence by epi-illumination microscopy. Appl Opt 1989; 28: 5237 – 5242.en_US
dc.identifier.citedreferenceAxelrod D. Surface-selective fluorescence imaging with a very high aperture objective. J Biomed Opt 2001; 6: 6 – 13.en_US
dc.identifier.citedreferenceLoerke D, Preitz B, Stuhmer W, Oheim M. Super-resolution measurements with evanescent-wave fluorescence excitation using variable beam incidence. J Biomed Opt 2000; 5: 23 – 30.en_US
dc.identifier.citedreferenceAxelrod D. Surface fluorescence microscopy by evanescent wave illumination. In: Lacey AJ, ed. Light Microscopy in Biology – A Practical Approach, 2nd edn. Oxford: Oxford University Press; 1999. p. 390 – 413.en_US
dc.identifier.citedreferenceThompson NL, Pearce KH, Hsieh HV. Total internal reflection fluorescence microscopy – application to substrate-supported planar membranes. Eur Biophys J 1993; 22: 367 – 378.en_US
dc.identifier.citedreferenceAxelrod D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys J 1979; 26: 557 – 574.en_US
dc.identifier.citedreferenceWhite JG, Squirrell JM, Eliceiri KW. Applying multiphoton imaging to the study of membrane dynamics in living cells. Traffic 2000; 2: 775 – 780.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.