Show simple item record

T Cell Antigen Receptor Vaccines for Active Therapy of T Cell Malignancies

dc.contributor.authorReddy, Sunil A.en_US
dc.contributor.authorOkada, Craig Y.en_US
dc.contributor.authorWong, Carmenen_US
dc.contributor.authorBahler, Daviden_US
dc.contributor.authorLevya, Ronalden_US
dc.date.accessioned2010-06-01T19:39:35Z
dc.date.available2010-06-01T19:39:35Z
dc.date.issued2001-09en_US
dc.identifier.citationREDDY, SUNIL A.; OKADA, CRAIG; WONG, CARMEN; BAHLER, DAVID; LEVYA, RONALD (2001). "T Cell Antigen Receptor Vaccines for Active Therapy of T Cell Malignancies." Annals of the New York Academy of Sciences 941(1 CUTANEOUS T CELL LYMPHOMA: BASIC AND CLINICALLY RELEVANT BIOLOGY ): 97-105. <http://hdl.handle.net/2027.42/72794>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72794
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11594586&dopt=citationen_US
dc.description.abstractT cell lymphoproliferative disorders continue to be serious management problems, and so alternative therapeutic modalities are continuously being explored. One such strategy involves immunotherapy using the T cell receptor (TCR) as a target. Specifically we are attempting to develop a T cell receptor idiotype (TCR-Id) vaccine because the TCR-Id can serve as a tumor-specific antigen. In this article we will briefly review the rationale for TCR-Id vaccines, the preclinical models as developed in our laboratory, and a discussion of our current plans for a vaccine trial in mycosis fungoides.en_US
dc.format.extent4964906 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2001 by the New York Academy of Sciencesen_US
dc.subject.otherIdiotypeen_US
dc.subject.otherT Cell Receptoren_US
dc.subject.otherVaccineen_US
dc.subject.otherT Cell Malignanciesen_US
dc.subject.otherMycosis Fungoidesen_US
dc.subject.otherTumor Antigensen_US
dc.titleT Cell Antigen Receptor Vaccines for Active Therapy of T Cell Malignanciesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan Medical Center, Ann Arbor, Michigan 48104, USAen_US
dc.contributor.affiliationotherStanford University Medical Center, Stanford, California 94305, USAen_US
dc.contributor.affiliationotherDuke University, Durham, North Carolina 27710, USAen_US
dc.contributor.affiliationotherUniversity of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USAen_US
dc.identifier.pmid11594586en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72794/1/j.1749-6632.2001.tb03714.x.pdf
dc.identifier.doi10.1111/j.1749-6632.2001.tb03714.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceOkada, C.Y., C.P. Wong, D.W. Denney & R. Levy, 1997. TCR vaccines for active immunotherapy of T cell malignancies. J. Immunol. 159: 5516 – 5527.en_US
dc.identifier.citedreferenceWong, C.P., C.Y. Okada & R. Levy, 1999. TCR vaccines against T cell lymphoma: QS-21 and IL-12 adjuvants induce a protective CD8 + T cell response. J. Immunol. 162: 2251 – 2258.en_US
dc.identifier.citedreferenceWong, C.P. &R. Levy. 2000. Recombinant adenovirus vaccine encoding a chimeric T-cell antigen receptor induces protective immunity against a T-cell lymphoma. Cancer Res. 60: 2689 – 2695.en_US
dc.identifier.citedreferenceEdelson, R.L. 1998. Cutaneous T-cell lymphoma: a model for selective immunotherapy. Cancer J. Sci. Am. 4: 62 – 71.en_US
dc.identifier.citedreferenceGirardi, M. & R.L. Edelson. 2000. Cutaneous T-cell lymphoma: pathogenesis and treatment [in process citation]. Oncology (Huntingt.) 14: 1061 – 1070; discussion 1070–1074, 1076.en_US
dc.identifier.citedreferenceKim, Y.H. &R.T. Hoppe. 1999. Mycosis fungoides and the Sezary syndrome. Semin. Oncol. 26: 276 – 289.en_US
dc.identifier.citedreferenceSiegel, R.S., T. Pandolfino, J. Guitart, et al. 2000. Primary cutaneous T-cell lymphoma: review and current concepts. J. Clin. Oncol. 18: 2908 – 2925.en_US
dc.identifier.citedreference8 Abbas, A.K., A.H. Lichtman & J.S. Pober. 2000. Cellular and Molecular Immunology, 4th Edition. W.B. Saunders. Philadelphia.en_US
dc.identifier.citedreferenceGeorge, A.J., S.G. Folkard, T.J. Hamblin & F.K. Stevenson, 1988. Idiotypic vaccination as a treatment for a B cell lymphoma. J. Immunol. 141: 2168 – 2174.en_US
dc.identifier.citedreferenceCampbell, M.J., L. Esserman, N.E. Byars, et al. 1990. Idiotype vaccination against murine B cell lymphoma. Humoral and cellular requirements for the full expression of antitumor immunity. J. Immunol. 145: 1029 – 1036.en_US
dc.identifier.citedreferenceCampbell, M.J., W. Carroll, S. Kon, et al. 1987. Idiotype vaccination against murine B cell lymphoma. Humoral and cellular responses elicited by tumor-derived immunoglobulin M and its molecular subunits. J. Immunol. 139: 2825 – 2833.en_US
dc.identifier.citedreferenceHsu, F.J., C.B. Caspar, D. Czerwinski, et al. 1997. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma—long-term results of a clinical trial. Blood 89: 3129 – 3135.en_US
dc.identifier.citedreferenceHsu, F.J., C. Benike, F. Fagnoni, et al. 1996. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 2: 52 – 58.en_US
dc.identifier.citedreferenceOsterroth, F., A. Garbe, P. Fisch & H. Veelken, 2000. Stimulation of cytotoxic T cells against idiotype immunoglobulin of malignant lymphoma with protein-pulsed or idiotype-transduced dendritic cells. Blood 95: 1342 – 1349.en_US
dc.identifier.citedreferenceStevenson, F.K. &J. Gordon. 1983. Immunization with idiotypic immunoglobulin protects against development of B lymphocytic leukemia, but emerging tumor cells can evade antibody attack by modulation. J. Immunol. 130: 970 – 973.en_US
dc.identifier.citedreferenceStevenson, F.K., D. Zhu, C.A. King, et al. 1995. Idiotypic DNA vaccines against B-cell lymphoma. Immunol. Rev. 145: 211 – 228.en_US
dc.identifier.citedreferenceReichardt, V.L., C.Y. Okada, K.E. Stockerl-Goldstein, et al. 1997. Rationale for adjuvant idiotypic vaccination after high-dose therapy for multiple myeloma. Biol. Blood Marrow Transplant. 3: 157 – 163.en_US
dc.identifier.citedreferenceReichardt, V.L., C.Y. Okada, A. Liso, et al. 1999. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood 93: 2411 – 2419.en_US
dc.identifier.citedreferenceAbe, A., N. Emi, H. Taji, et al. 1996. Induction of humoral and cellular anti-idiotypic immunity by intradermal injection of naked DNA encoding a human variable region gene sequence of an immunoglobulin heavy chain in a B cell malignancy. Gene Ther. 3: 988 – 993.en_US
dc.identifier.citedreferenceCampbell, M.J., L. Esserman & R. Levy, 1988. Immunotherapy of established murine B cell lymphoma. Combination of idiotype immunization and cyclophosphamide. J. Immunol. 141: 3227 – 3233.en_US
dc.identifier.citedreferenceCampbell, M.J., L. Esserman & N.E. Byars, et al. 1989. Development of a new therapeutic approach to B cell malignancy. The induction of immunity by the host against cell surface receptor on the tumor. Int. Rev. Immunol. 4: 251 – 270.en_US
dc.identifier.citedreferenceCaspar, C.B., S. Levy & R. Levy, 1997. Idiotype vaccines for non-Hodgkin's lymphoma induce polyclonal immune responses that cover mutated tumor idiotypes: comparison of different vaccine formulations. Blood 90: 3699 – 3706.en_US
dc.identifier.citedreferenceMiller, R.A., D.G. Maloney, R. Warnke & R. Levy, 1982. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N. Engl. J. Med. 306: 517 – 522.en_US
dc.identifier.citedreferenceBarth, R.K., B.S. Kim, N.C. Lan, et al. 1985. The murine T-cell receptor uses a limited repertoire of expressed V beta gene segments. Nature 316: 517 – 523.en_US
dc.identifier.citedreferenceAshwell, J.D., D.L. Longo & S.H. Bridges, 1987. T-cell tumor elimination as a result of T-cell receptor-mediated activation. Science 237: 61 – 64.en_US
dc.identifier.citedreferenceUrban, J.L., V. Kumar, D.H. Kono, et al. 1988. Restricted use of T cell receptor V genes in murine autoimmune encephalomyelitis raises possibilities for antibody therapy [see comments]. Cell 54: 577 – 592.en_US
dc.identifier.citedreferenceAcha-Orbea, H., D.J. Mitchell, L. Timmermann, et al. 1988. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell 54: 263 – 273.en_US
dc.identifier.citedreferenceOwhashi, M. &E. Heber-Katz. 1988. Protection from experimental allergic encephalomyelitis conferred by a monoclonal antibody directed against a shared idiotype on rat T cell receptors specific for myelin basic protein. J. Exp. Med. 168: 2153 – 2164.en_US
dc.identifier.citedreferenceHashim, G.A., A.A. Vandenbark, A.B. Galang, et al. 1990. Antibodies specific for VB8 receptor peptide suppress experimental autoimmune encephalomyelitis. J. Immunol. 144: 4621 – 4627.en_US
dc.identifier.citedreferenceOffner, H., G.A. Hashim & A.A. Vandenbark, 1991. T cell receptor peptide therapy triggers autoregulation of experimental encephalomyelitis. Science 251: 430 – 432.en_US
dc.identifier.citedreferenceHowell, M.D., S.T. Winters, T. Olee, et al. 1989. Vaccination against experimental allergic encephalomyelitis with T cell receptor peptides [published erratum appears in Science 1990 Mar 9; 247 (4947): 1167]. Science 246: 668 – 670.en_US
dc.identifier.citedreferenceVandenbark, A.A., G. Hashim & H. Offner, 1989. Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature 341: 541 – 544.en_US
dc.identifier.citedreferenceChunduru, S.K., R.M. Sutherland, G.A. Stewart, et al. 1996. Exploitation of the Vbeta8.2 T cell receptor in protection against experimental autoimmune encephalomyelitis using a live vaccinia virus vector. J. Immunol. 156: 4940 – 4945.en_US
dc.identifier.citedreferenceKanagawa, O. 1989. In vivo T cell tumor therapy with monoclonal antibody directed to the V beta chain of T cell antigen receptor. J. Exp. Med. 170: 1513 – 1519.en_US
dc.identifier.citedreferenceJanson, C.H., M.J. Tehrani, H. Mellstedt & H. Wigzell, 1989. Anti-idiotypic monoclonal antibody to a T-cell chronic lymphatic leukemia. Characterization of the antibody, in vitro effector functions and results of therapy. Cancer Immunol. Immunother. 28: 225 – 232.en_US
dc.identifier.citedreferenceLin, A.Y., B. Devaux, A. Green, et al. 1990. Expression of T cell antigen receptor heterodimers in a lipid-linked form. Science 249: 677 – 679.en_US
dc.identifier.citedreferenceBahler, D.W., G. Berry, J. Oksenberg, et al. 1992. Diversity of T-cell antigen receptor variable genes used by mycosis fungoides cells. Am. J. Pathol. 140: 1 – 8.en_US
dc.identifier.citedreferenceFerradini, L., S. Roman-Roman, O. Azogui, et al. 1993. The use of anchored polymerase chain reaction for the study of large numbers of human T-cell receptor transcripts. Mol. Immunol. 30: 1143 – 1150.en_US
dc.identifier.citedreferenceOsterroth, F., O. Alkan, A. Mackensen, et al. 1999. Rapid expression cloning of human immunoglobulin Fab fragments for the analysis of antigen specificity of B cell lymphomas and anti-idiotype lymphoma vaccination. J. Immunol. Methods 229: 141 – 153.en_US
dc.identifier.citedreferenceLoh, E.Y., J.F. Elliott, S. Cwirla, et al. 1989. Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain. Science 243: 217 – 220.en_US
dc.identifier.citedreference41 Smart Race cDNA Amplification Kit User Manual. 1999. Clontech Laboratories. Palo Alto, CA.en_US
dc.identifier.citedreferenceChenchik, A., L. Diachenko, F. Moqadam, et al. 1996. Full-length cDNA cloning and determination of mRNA 5′ and 3′ ends by amplification of adaptor-ligated cDNA. Biotechniques 21: 526 – 534.en_US
dc.identifier.citedreferenceMatz, M., D. Shagin, E. Bogdanova, et al. 1999. Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res. 27: 1558 – 1560.en_US
dc.identifier.citedreferenceKellogg, D.E., I. Rybalkin, S. Chen, et al. 1994. TaqStart Antibody: “hot start” PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase. Biotechniques 16: 1134 – 1137.en_US
dc.identifier.citedreferenceDon, R.H., P.T. Cox, B.J. Wainwright, et al. 1991. ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19: 4008.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.