Show simple item record

Renal Allografts with IF/TA Display Distinct Expression Profiles of Metzincins and Related Genes

dc.contributor.authorRödder, S.en_US
dc.contributor.authorScherer, A.en_US
dc.contributor.authorRaulf, F.en_US
dc.contributor.authorBerthier, C. C.en_US
dc.contributor.authorHertig, A.en_US
dc.contributor.authorCouzi, L.en_US
dc.contributor.authorDurrbach, A.en_US
dc.contributor.authorRondeau, E.en_US
dc.contributor.authorMarti, H. -P.en_US
dc.date.accessioned2010-06-01T19:52:11Z
dc.date.available2010-06-01T19:52:11Z
dc.date.issued2009-03en_US
dc.identifier.citationRÖdder, S.; Scherer, A.; Raulf, F.; Berthier, C. C.; Hertig, A.; Couzi, L.; Durrbach, A.; Rondeau, E.; Marti, H.-P. (2009). "Renal Allografts with IF/TA Display Distinct Expression Profiles of Metzincins and Related Genes." American Journal of Transplantation 9(3): 517-526. <http://hdl.handle.net/2027.42/73001>en_US
dc.identifier.issn1600-6135en_US
dc.identifier.issn1600-6143en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73001
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19191772&dopt=citationen_US
dc.format.extent715722 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights© 2009 American Society of Transplantation and the American Society of Transplant Surgeonsen_US
dc.subject.otherChronic Allograft Injuryen_US
dc.subject.otherExtracellular Matrixen_US
dc.subject.otherIF/TAen_US
dc.subject.otherMatrix Metalloproteasesen_US
dc.subject.otherMMP-7en_US
dc.subject.otherTranscriptomicsen_US
dc.titleRenal Allografts with IF/TA Display Distinct Expression Profiles of Metzincins and Related Genesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Department of Internal Medicine – Nephrology, Ann Arbor, MIen_US
dc.contributor.affiliationotherDepartment of Nephrology and Hypertension, Inselspital Bern, University Hospital, University Bern, Switzerlanden_US
dc.contributor.affiliationotherSpheromics, Kontiolahti, Finlanden_US
dc.contributor.affiliationotherNovartis Institutes for BioMedical Research, Basel, Switzerlanden_US
dc.contributor.affiliationotherDepartment of Nephrology and Kidney Transplantation, HÔpital Tenon, Paris, Franceen_US
dc.contributor.affiliationotherINSERM, Unite 702, HÔpital Tenon, Paris, Franceen_US
dc.contributor.affiliationotherNephrology Department, HÔpital Pellegrin-Tripode, C.H.U. Bordeaux, Franceen_US
dc.contributor.affiliationotherNephrology Department, IFRNT, Le Kremlin Bicetre, UniversitÉ Paris Sud, Franceen_US
dc.identifier.pmid19191772en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73001/1/j.1600-6143.2008.02512.x.pdf
dc.identifier.doi10.1111/j.1600-6143.2008.02512.xen_US
dc.identifier.sourceAmerican Journal of Transplantationen_US
dc.identifier.citedreferenceSolez K, Colvin RB, Racusen LC et al. Banff 07 classification of renal allograft pathology: Updates and future directions. Am J Transplant 2008; 8: 753 – 760.en_US
dc.identifier.citedreferenceHalloran PF, Melk A, Barth C. Rethinking chronic allograft nephropathy: The concept of accelerated senescence. J Am Soc Nephrol 1999; 10: 167 – 181.en_US
dc.identifier.citedreferenceNankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR. The natural history of chronic allograft nephropathy. N Eng J Med 2003; 349: 2326 – 2333.en_US
dc.identifier.citedreferenceJoosten SA, Sijpkens YW, van Kooten C, Paul LC. Chronic renal allograft rejection: Pathophysiologic considerations. Kidney Int 2005; 68: 1 – 13.en_US
dc.identifier.citedreferenceSolez K, Colvin RB, Racusen LC et al. Banff ‘05 Meeting Report: Differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy (‘CAN’). Am J Transplant 2007; 7: 518 – 526.en_US
dc.identifier.citedreferenceZeisberg M, Soubasakos MA, Kalluri R. Animal models of renal fibrosis. Methods Mol Med 2005; 117: 261 – 272.en_US
dc.identifier.citedreferenceGiannelli G, Quaranta V, Antonaci S. Tissue remodelling in liver diseases. Histol Histopathol 2003; 18: 1267 – 1274.en_US
dc.identifier.citedreferenceNagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem 1999; 274: 21491 – 21494.en_US
dc.identifier.citedreferenceWoessner JF Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. Faseb J 1991; 5: 2145 – 2154.en_US
dc.identifier.citedreferenceStamenkovic I. Extracellular matrix remodelling: The role of matrix metalloproteinases. J Pathol 2003; 200: 448 – 464.en_US
dc.identifier.citedreferenceAhmed AK, Haylor JL, El Nahas AM, Johnson TS. Localization of matrix metalloproteinases and their inhibitors in experimental progressive kidney scarring. Kidney Int 2007; 71: 755 – 763.en_US
dc.identifier.citedreferenceHuang CC, Chuang JH, Chou MH et al. Matrilysin (MMP-7) is a major matrix metalloproteinase upregulated in biliary atresia-associated liver fibrosis. Mod Pathol 2005; 18: 941 – 950.en_US
dc.identifier.citedreferenceBoixel C, Fontaine V, Rucker-Martin C et al. Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat. J Am Coll Cardiol 2003; 42: 336 – 344.en_US
dc.identifier.citedreferencePardo A, Gibson K, Cisneros J et al. Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis. PLoS Medicine 2005; 2: e251.en_US
dc.identifier.citedreferenceShackel NA, McGuinness PH, Abbott CA, Gorrell MD, McCaughan GW. Insights into the pathobiology of hepatitis C virus-associated cirrhosis: Analysis of intrahepatic differential gene expression. Am J Pathol 2002; 160: 641 – 654.en_US
dc.identifier.citedreferenceBergers G, Coussens LM. Extrinsic regulators of epithelial tumor progression: Metalloproteinases. Curr Opin Genet Dev 2000; 10: 120 – 127.en_US
dc.identifier.citedreferenceWilson CL, Matrisian LM. Matrilysin: An epithelial matrix metalloproteinase with potentially novel functions. Int J Biochem Cell Biol 1996; 28: 123 – 136.en_US
dc.identifier.citedreferenceStreuli C. Extracellular matrix remodelling and cellular differentiation. Curr Opin Cell Biol 1999; 11: 634 – 640.en_US
dc.identifier.citedreferenceFingleton B, Powell WC, Crawford HC, Couchman JR, Matrisian LM. A rat monoclonal antibody that recognizes pro- and active MMP-7 indicates polarized expression in vivo. Hybridoma ( 2005 ) 2007; 26: 22 – 27.en_US
dc.identifier.citedreferenceLods N, Ferrari P, Frey FJ et al. Angiotensin-converting enzyme inhibition but not angiotensin II receptor blockade regulates matrix metalloproteinase activity in patients with glomerulonephritis. J Am Soc Nephrol 2003; 14: 2861 – 2872.en_US
dc.identifier.citedreferenceFan L, Wang S, Wang H, Guo T. Singular points detection based on zero-pole model in fingerprint images. IEEE Trans Pattern Analysis Machine Intelligence 2008; 30: 929 – 940.en_US
dc.identifier.citedreferenceMueller TF, Einecke G, Reeve J et al. Microarray analysis of rejection in human kidney transplants using pathogenesis-based transcript sets. Am J Transplant 2007; 7: 2712 – 2722.en_US
dc.identifier.citedreferenceAlizadeh A, Eisen M, Davis RE et al. The lymphochip: A specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb Symp Quant Biol 1999; 64: 71 – 78.en_US
dc.identifier.citedreferenceSubramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: A desktop application for Gene Set Enrichment Analysis. Bioinformatics (Oxford, UK) 2007; 23: 3251 – 3253.en_US
dc.identifier.citedreferenceJechlinger M, Grunert S, Tamir IH et al. Expression profiling of epithelial plasticity in tumor progression. Oncogene 2003; 22: 7155 – 7169.en_US
dc.identifier.citedreferenceBranton MH, Kopp JB. TGF-beta and fibrosis. Microbes and infection/Institut Pasteur 1999; 1: 1349 – 1365.en_US
dc.identifier.citedreferenceRodwell GE, Sonu R, Zahn JM et al. A transcriptional profile of aging in the human kidney. PLoS Biol 2004; 2: e427.en_US
dc.identifier.citedreferenceBerthier CC, Lods N, Joosten SA et al. Differential regulation of metzincins in experimental chronic renal allograft rejection: Potential markers and novel therapeutic targets. Kidney Int 2006; 69: 358 – 368.en_US
dc.identifier.citedreferenceKalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112: 1776 – 1784.en_US
dc.identifier.citedreferenceZeisberg M, Bonner G, Maeshima Y et al. Renal fibrosis: Collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation. Am J Pathol 2001; 159: 1313 – 1321.en_US
dc.identifier.citedreferenceUnemori EN, Werb Z. Reorganization of polymerized actin: A possible trigger for induction of procollagenase in fibroblasts cultured in and on collagen gels. J Cell Biol 1986; 103: 1021 – 1031.en_US
dc.identifier.citedreferenceTremble PM, Lane TF, Sage EH, Werb Z. SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway. J Cell Biol 1993; 121: 1433 – 1444.en_US
dc.identifier.citedreferenceWu Y, Zhou BP. New insights of epithelial-mesenchymal transition in cancer metastasis. Acta Biochimica et Biophysica Sinica 2008; 40: 643 – 650.en_US
dc.identifier.citedreferenceSurendran K, McCaul SP, Simon TC. A role for Wnt-4 in renal fibrosis. Am J Physiol 2002; 282: F431 – 441.en_US
dc.identifier.citedreferenceChilosi M, Poletti V, Zamo A et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 2003; 162: 1495 – 1502.en_US
dc.identifier.citedreferenceClevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127: 469 – 480.en_US
dc.identifier.citedreferenceBrabletz T, Jung A, Dag S, Hlubek F, Kirchner T. Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 1999; 155: 1033 – 1038.en_US
dc.identifier.citedreferenceTamamura Y, Otani T, Kanatani N et al. Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Bioll Chem 2005; 280: 19185 – 19195.en_US
dc.identifier.citedreferenceFlechner SM, Kurian SM, Solez K et al. De novo kidney transplantation without use of calcineurin inhibitors preserves renal structure and function at two years. Am J Transplant 2004; 4: 1776 – 1785.en_US
dc.identifier.citedreferenceHotchkiss H, Chu TT, Hancock WW et al. Differential expression of profibrotic and growth factors in chronic allograft nephropathy. Transplantation 2006; 81: 342 – 349.en_US
dc.identifier.citedreferenceYang Z, Strickland DK, Bornstein P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem 2001; 276: 8403 – 8408.en_US
dc.identifier.citedreferenceSchroen B, Heymans S, Sharma U et al. Thrombospondin-2 is essential for myocardial matrix integrity: Increased expression identifies failure-prone cardiac hypertrophy. Circ Res 2004; 95: 515 – 522.en_US
dc.identifier.citedreferenceSpinale FG. Cell-matrix signaling and thrombospondin: Another link to myocardial matrix remodeling. Circ Res 2004; 95: 446 – 448.en_US
dc.identifier.citedreferenceBornstein P, Agah A, Kyriakides TR. The role of thrombospondins 1 and 2 in the regulation of cell-matrix interactions, collagen fibril formation, and the response to injury. Int J Biochem Cell Biol 2004; 36: 1115 – 1125.en_US
dc.identifier.citedreferenceMazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes J. Osteopontin–a molecule for all seasons. Qjm 2002; 95: 3 – 13.en_US
dc.identifier.citedreferenceChangotade SI, Assoumou A, Gueniche F et al. Epigallocatechin gallate's protective effect against MMP7 in recessive dystrophic epidermolysis bullosa patients. J Investig Dermatol 2007; 127: 821 – 828.en_US
dc.identifier.citedreferenceEaton VL, Lerret NM, Velasquez-Lopera MM et al. Enhanced allograft survival and modulation of T-cell alloreactivity induced by inhibition of MMP/ADAM enzymatic activity. Am J Transplant 2008; 8: 507 – 516.en_US
dc.identifier.citedreferenceGarcia RA, Pantazatos DP, Gessner CR, Go KV, Woods VL Jr., Villarreal FJ. Molecular interactions between matrilysin and the matrix metalloproteinase inhibitor doxycycline investigated by deuterium exchange mass spectrometry. Mol Pharmacol 2005; 67: 1128 – 1136.en_US
dc.identifier.citedreferenceLutz J, Yao Y, Song E et al. Inhibition of matrix metalloproteinases during chronic allograft nephropathy in rats. Transplantation 2005; 79: 655 – 661.en_US
dc.identifier.citedreferenceBerthier CC, Wahl PR, Le Hir M et al. Sirolimus ameliorates the enhanced expression of metalloproteinases in a rat model of autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2008; 23: 880 – 889.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.