Show simple item record

Burkholderia cenocepacia ET12 strain activates TNFR1 signalling in cystic fibrosis airway epithelial cells

dc.contributor.authorSajjan, Umadevi S.en_US
dc.contributor.authorHershenson, Marc B.en_US
dc.contributor.authorForstner, Janet F.en_US
dc.contributor.authorLiPuma, John J.en_US
dc.date.accessioned2010-06-01T19:52:48Z
dc.date.available2010-06-01T19:52:48Z
dc.date.issued2008-01en_US
dc.identifier.citationSajjan, Umadevi S.; Hershenson, Marc B.; Forstner, Janet F.; LiPuma, John J. (2008). " Burkholderia cenocepacia ET12 strain activates TNFR1 signalling in cystic fibrosis airway epithelial cells." Cellular Microbiology 10(1): 188-201. <http://hdl.handle.net/2027.42/73011>en_US
dc.identifier.issn1462-5814en_US
dc.identifier.issn1462-5822en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73011
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17697131&dopt=citationen_US
dc.description.abstractBurkholderia cenocepacia is an important pulmonary pathogen in individuals with cystic fibrosis (CF). Infection is often associated with severe pulmonary inflammation, and some patients develop a fatal necrotizing pneumonia and sepsis (‘cepacia syndrome’). The mechanisms by which this species causes severe pulmonary inflammation are poorly understood. Here, we demonstrate that B. cenocepacia BC7, a potentially virulent representative of the epidemic ET12 lineage, binds to tumour necrosis factor receptor 1 (TNFR1) and activates TNFR1-related signalling pathway similar to TNF-α, a natural ligand for TNFR1. This interaction participates in stimulating a robust IL-8 production from CF airway epithelial cells. In contrast, BC45, a less virulent ET12 representative, and ATCC 25416, an environmental B. cepacia strain, do not bind to TNFR1 and stimulate only minimal IL-8 production from CF cells. Further, TNFR1 expression is increased in CF airway epithelial cells compared with non-CF cells. We also show that B. cenocepacia ET12 strain colocaizes with TNFR1 in vitro and in the lungs of CF patients who died due to infection with B. cenocepacia, ET12 strain. Together, these results suggest that interaction of B. cenocepacia , ET12 strain with TNFR1 may contribute to robust inflammatory responses elicited by this organism.en_US
dc.format.extent771097 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2007 The Authors; Journal compilation © 2007 Blackwell Publishing Ltden_US
dc.titleBurkholderia cenocepacia ET12 strain activates TNFR1 signalling in cystic fibrosis airway epithelial cellsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA.en_US
dc.contributor.affiliationotherDepartment of Biochemistry and Structural Biology, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.en_US
dc.identifier.pmid17697131en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73011/1/j.1462-5822.2007.01029.x.pdf
dc.identifier.doi10.1111/j.1462-5822.2007.01029.xen_US
dc.identifier.sourceCellular Microbiologyen_US
dc.identifier.citedreferenceAdamo, R., Sokol, S., Soong, G., Gomez, M.I., and Prince, A. ( 2004 ) Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5. Am J Respir Cell Mol Biol 30: 627 – 634.en_US
dc.identifier.citedreferenceBals, R., and Hiemstra, P.S. ( 2004 ) Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J 23: 327 – 333.en_US
dc.identifier.citedreferenceBaud, V., and Karin, M. ( 2001 ) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11: 372 – 377.en_US
dc.identifier.citedreferenceBryan, R., Kube, D., Perez, A., Davis, P., and Prince, A. ( 1998 ) Overproduction of the CFTR R domain leads to increased levels of AsialoGM1 and increased Pseudomonas aeruginosa binding by epithelial cells. Am J Respir Cell Mol Biol 19: 269 – 277.en_US
dc.identifier.citedreferenceCastanos-Velez, E., Maerlan, S., Osorio, L.M., Aberg, F., Biberfeld, P., Orn, A., and Rottenberg, M.E. ( 1998 ) Trypanosoma cruzi infection in tumor necrosis factor receptor p55-deficient mice. Infect Immun 66: 2960 – 2968.en_US
dc.identifier.citedreferenceDe Soyza, A., McDowell, A., Archer, L., Dark, J.H., Elborn, S.J., Mahenthiralingam, E., et al. ( 2001 ) Burkholderia cepacia complex genomovars and pulmonary transplantation outcomes in patients with cystic fibrosis. Lancet 358: 1780 – 1781.en_US
dc.identifier.citedreferenceDe Soyza, A., Morris, K., McDowell, A., Doherty, C., Archer, L., Perry, J., et al. ( 2004a ) Prevalence and clonality of Burkholderia cepacia complex genomovars in UK patients with cystic fibrosis referred for lung transplantation. Thorax 59: 526 – 528.en_US
dc.identifier.citedreferenceDe Soyza, A., Ellis, C.D., Khan, C.M., Corris, P.A., and Demarco de Hormaeche, R. ( 2004b ) Burkholderia cenocepacia lipopolysaccharide, lipid A, and proinflammatory activity. Am J Respir Crit Care Med 170: 70 – 77.en_US
dc.identifier.citedreferenceEidelman, O., Srivastava, M., Zhang, J., Leighton, X., Murtie, J., Jozwik, C., et al. ( 2001 ) Control of the proinflammatory state in cystic fibrosis lung epithelial cells by genes from the TNF-alphaR/NFkappaB pathway. Mol Med 7: 523 – 534.en_US
dc.identifier.citedreferenceEpelman, S., Stack, D., Bell, C., Wong, E., Neely, G.G., Krutzik, S., et al. ( 2004 ) Different domains of Pseudomonas aeruginosa exoenzyme S activate distinct TLRs. J Immunol 173: 2031 – 2040.en_US
dc.identifier.citedreferenceFink, J., Steer, J.H., Joyce, D.A., McWilliam, A.S., and Stewart, G.A. ( 2003 ) Pro-inflammatory effects of Burkholderia cepacia on cystic fibrosis respiratory epithelium. FEMS Immunol Med Microbiol 38: 273 – 282.en_US
dc.identifier.citedreferenceGomez, M.I., Lee, A., Reddy, B., Muir, A., Soong, G., Pitt, A., et al. ( 2004 ) Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat Med 10: 842 – 848.en_US
dc.identifier.citedreferenceGomez, M.I., Sokol, S.H., Muir, A.B., Soong, G., Bastien, J., and Prince, A.S. ( 2005 ) Bacterial induction of TNF-alpha converting enzyme expression and IL-6 receptor alpha shedding regulates airway inflammatory signaling. J Immunol 175: 1930 – 1936.en_US
dc.identifier.citedreferenceGomez, M.I., Seaghdha, M.O., and Prince, A.S. ( 2007 ) Staphylococcus aureus protein A activates TACE through EGFR-dependent signaling. EMBO J 26: 701 – 709.en_US
dc.identifier.citedreferenceHehlgans, T., and Pfeffer, K. ( 2005 ) The intriguing biology of the tumor necrosis factor/tumor necrosis factor receptor superfamily: players, rules and the games. Immunology 115: 1 – 20.en_US
dc.identifier.citedreferenceHsu, H., Huang, J., Shu, H.B., Baichwal, V., and Goeddel, D.V. ( 1996a ) TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4: 387 – 396.en_US
dc.identifier.citedreferenceHsu, H., Shu, H.B., Pan, M.G., and Goeddel, D.V. ( 1996b ) TRADD-TRAF2 and TRADD–FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84: 299 – 308.en_US
dc.identifier.citedreferenceIsles, A., Maclusky, I., Corey, M., Gold, R., Prober, C., Fleming, P., and Levison, H. ( 1984 ) Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104: 206 – 210.en_US
dc.identifier.citedreferenceKube, D., Sontich, U., Fletcher, D., and Davis, P.B. ( 2001 ) Proinflammatory cytokine responses to P. aeruginosa infection in human airway epithelial cell lines. Am J Physiol Lung Cell Mol Physiol 280: L493 – L502.en_US
dc.identifier.citedreferenceLedson, M.J., Gallagher, M.J., Jackson, M., Hart, C.A., and Walshaw, M.J. ( 2002 ) Outcome of Burkholderia cepacia colonisation in an adult cystic fibrosis centre. Thorax 57: 142 – 145.en_US
dc.identifier.citedreferenceMoll, R., Franke, W.W., Schiller, D.L., Geiger, B., and Krepler, R. ( 1982 ) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31: 11 – 24.en_US
dc.identifier.citedreferenceNagle, R.B., Moll, R., Weidauer, H., Nemetschek, H., and Franke, W.W. ( 1985 ) Different patterns of cytokeratin expression in the normal epithelia of the upper respiratory tract. Differentiation 30: 130 – 140.en_US
dc.identifier.citedreferencePalfreyman, R.W., Watson, M.L., Eden, C., and Smith, A.W. ( 1997 ) Induction of biologically active interleukin-8 from lung epithelial cells by Burkholderia ( Pseudomonas ) cepacia products. Infect Immun 65: 617 – 622.en_US
dc.identifier.citedreferencePfeffer, K., Matsuyama, T., Kundig, T.M., Wakeham, A., Kishihara, K., Shahinian, A., et al. ( 1993 ) Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73: 457 – 467.en_US
dc.identifier.citedreferenceReddi, K., Phagoo, S.B., Anderson, K.D., and Warburton, D. ( 2003 ) Burkholderia cepacia -induced IL-8 gene expression in an alveolar epithelial cell line: signalling through CD14 and mitogen-activated protein kinase. Pediatr Res 54: 297 – 305.en_US
dc.identifier.citedreferenceRiordan, J.R., Rommens, J.M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., et al. ( 1989 ) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 1066 – 1073.en_US
dc.identifier.citedreferenceRommens, J.M., Iannuzzi, M.C., Kerem, B., Drumm, M.L., Melmer, G., Dean, M., et al. ( 1989 ) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245: 1059 – 1065.en_US
dc.identifier.citedreferenceSajjan, U.S., and Forstner, J.F. ( 1993 ) Role of a 22-kilodalton pilin protein in binding of Pseudomonas cepacia to buccal epithelial cells. Infect Immun 61: 3157 – 3163.en_US
dc.identifier.citedreferenceSajjan, U.S., Corey, M., Karmali, M.A., and Forstner, J.F. ( 1992 ) Binding of Pseudomonas cepacia to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis. J Clin Invest 89: 648 – 656.en_US
dc.identifier.citedreferenceSajjan, U.S., Sylvester, F.A., and Forstner, J. ( 2000a ) Cable-piliated Burkholderia cepacia bind to cytokeratin 13 of epithelial cells. Infect Immun 68: 1787 – 1795.en_US
dc.identifier.citedreferenceSajjan, U., Wu, Y., Kent, G., and Forstner, J. ( 2000b ) Preferential adherence of cable-piliated Burkholderia cepacia to respiratory epithelia of CF knockout mice and human cystic fibrosis lung explants. J Med Microbiol 49: 875 – 885.en_US
dc.identifier.citedreferenceSajjan, U., Thanassoulis, G., Cherapanov, V., Lu, A., Sjolin, C., Steer, B., et al. ( 2001a ) Susceptibility of Cftr (–/–) mice to pulmonary infection with Burkholderia cepacia. Infect Immun 69: 5138 – 5150.en_US
dc.identifier.citedreferenceSajjan, U., Corey, M., Humar, A., Tullis, E., Cutz, E., Ackerley, C., and Forstner, J. ( 2001b ) Immunolocalization of Burkholderia cepacia in the lungs of cystic fibrosis patients. J Med Microbiol 50: 535 – 546.en_US
dc.identifier.citedreferenceSajjan, U., Ackerley, C., and Forstner, J. ( 2002 ) Interaction of cblA /Adhesin-positive Burkholderia cepacia with squamous epithelium. Cell Microbiol 4: 73 – 86.en_US
dc.identifier.citedreferenceSajjan, S., Keshavjee, S., and Forstner, J. ( 2004 ) Responses of well-differentiated airway epithelial cell cultures from healthy donors and patients with cystic fibrosis to Burkholderia cenocepacia infection. Infect Immun 72: 4188 – 4199.en_US
dc.identifier.citedreferenceSajjan, U.S., Jia, Y., Newcomb, D.C., Bentley, J.K., Lukacs, N.W., LiPuma, J.J., and Hershenson, M.B. ( 2006 ) H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM-1 and TLR3 expression. FASEB J 20: 2121 – 2123.en_US
dc.identifier.citedreferenceShaw, D., Poxton, I.R., and Govan, J.R. ( 1995 ) Biological activity of Burkholderia ( Pseudomonas ) cepacia lipopolysaccharide. FEMS Immunol Med Microbiol 11: 99 – 106.en_US
dc.identifier.citedreferenceSoong, G., Reddy, B., Sokol, S., Adamo, R., and Prince, A. ( 2004 ) TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J Clin Invest 113: 1482 – 1489.en_US
dc.identifier.citedreferenceStanger, B.Z., Leder, P., Lee, T.H., Kim, E., and Seed, B. ( 1995 ) RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81: 513 – 523.en_US
dc.identifier.citedreferenceUrban, T.A., Griffith, A., Torok, A.M., Smolkin, M.E., Burns, J.L., and Goldberg, J.B. ( 2004 ) Contribution of Burkholderia cenocepacia flagella to infectivity and inflammation. Infect Immun 72: 5126 – 5134.en_US
dc.identifier.citedreferenceWright, T.W., Pryhuber, G.S., Chess, P.R., Wang, Z., Notter, R.H., and Gigliotti, F. ( 2004 ) TNF receptor signaling contributes to chemokine secretion, inflammation, and respiratory deficits during Pneumocystis pneumonia. J Immunol 172: 2511 – 2521.en_US
dc.identifier.citedreferenceZeitlin, P.L., Lu, L., Cutting, G., Stetten, G., Kieffer, K.A., Craig, R., and Guggino, W.B. ( 1991 ) A cystic fibrosis bronchial epithelial cell line: immortalization by adeno-12-SV40 infection. Am J Respir Cell Mol Biol 4: 313 – 319.en_US
dc.identifier.citedreferenceZughaier, S.M., Ryley, H.C., and Jackson, S.K. ( 1999 ) Lipopolysaccharide (LPS) from Burkholderia cepacia is more active than LPS from Pseudomonas aeruginosa and Stenostrophomonas maltophilia in stimulating tumor necrosis factor alpha from human monocytes. Infect Immun 67: 1505 – 1507.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.