Show simple item record

Long-period body wave traveltimes through the crust: implication for crustal corrections and seismic tomography

dc.contributor.authorRitsema, Jeroenen_US
dc.contributor.authorvan Heijst, H. J.en_US
dc.contributor.authorWoodhouse, J. H.en_US
dc.contributor.authorDeuss, A.en_US
dc.date.accessioned2010-06-01T20:00:31Z
dc.date.available2010-06-01T20:00:31Z
dc.date.issued2009-11en_US
dc.identifier.citationRitsema, J.; van Heijst, H. J.; Woodhouse, J. H.; Deuss, A. (2009). "Long-period body wave traveltimes through the crust: implication for crustal corrections and seismic tomography." Geophysical Journal International 179(2): 1255-1261. <http://hdl.handle.net/2027.42/73136>en_US
dc.identifier.issn0956-540Xen_US
dc.identifier.issn1365-246Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73136
dc.description.abstractThe traveltimes of P and SH waves through the crust depend strongly on wave period. At periods longer than 10–15 s, where traveltime measurements for indirect (e.g. surface reflected and core reflected) waves are typically made, the traveltimes are shorter than predicted by ray theory. Crustal corrections, often used in global mantle tomography to isolate the effects of the crust on teleseismic traveltimes, may have a complex frequency dependence and influence finite-frequency inversions. Crustal corrections for profiles of CRUST2.0 and the PREM reference model for the mantle may be several seconds larger or smaller than ray-theoretical values, depending on crustal thickness, crustal velocities and wave period. This variability is observed in the difference times between the seismic phases SS and S and between PP and P . It is therefore important to incorporate the effects of the crust on traveltimes in finite-frequency tomography, in order to take full advantage of the variable mantle sensitivity of body waves at different periods.en_US
dc.format.extent922093 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 RASen_US
dc.subject.otherBody Wavesen_US
dc.subject.otherSeismic Tomographyen_US
dc.subject.otherWave Propagationen_US
dc.subject.otherCrustal Structureen_US
dc.titleLong-period body wave traveltimes through the crust: implication for crustal corrections and seismic tomographyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 , USA. E-mail: jritsema@umich.eduen_US
dc.contributor.affiliationotherDepartment of Earth Sciences, University of Oxford, Oxford OX1 3PR , UKen_US
dc.contributor.affiliationotherDepartment of Earth Sciences, University of Cambridge, Cambridge CB3 0EZ , UKen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73136/1/j.1365-246X.2009.04365.x.pdf
dc.identifier.doi10.1111/j.1365-246X.2009.04365.xen_US
dc.identifier.sourceGeophysical Journal Internationalen_US
dc.identifier.citedreferenceBassin, C., Laske, G. & Masters, G., 2000. The current limits of resolution for surface wave tomography in North America, EOS, Trans. Am. geophys. Un., 81, F897.en_US
dc.identifier.citedreferenceCleary, J. & Hales, A.L., 1966. An analysis of the travel times of P waves to North American stations, in the distance range 32° to 100°, Bull. seism. Soc. Am., 56, 467 – 489.en_US
dc.identifier.citedreferenceDziewonski, A.M. & Anderson, D.L., 1981. Preliminary Reference Earth Model, Phys. Earth planet. Int., 25, 297 – 356.en_US
dc.identifier.citedreferenceDziewonski, A.M. & Anderson, D.L., 1983. Travel-times and station corrections for P-waves at teleseismic distances, J. geophys. Res., 88, 3295 – 3314.en_US
dc.identifier.citedreferenceGrand, S.P., 1994. Shear mantle structure beneath the Americas and the surrounding oceans, J. geophys. Res., 99, 11 591 – 11 621.en_US
dc.identifier.citedreferenceHaskell, N.A., 1953. The dispersion of surface waves in multilayered media, Bull. seis. Soc. Am., 43, 17 – 34.en_US
dc.identifier.citedreferenceHouser, C., Masters, G., Shearer, P. & Laske, G., 2008. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms, Geophys. J. Int., 174, 195 – 212.en_US
dc.identifier.citedreferenceKennett, B.L.N., Engdahl, E.R. & Buland, R., 1995. Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 122, 108 – 124.en_US
dc.identifier.citedreferenceLiu, X.F. & Dziewonski, A.M., 1996. Global analysis of shear wave velocity anomalies in the lowermost mantle, in The Core-Mantle Boundary Region, Vol. 28, pp. 21 – 36, Geodynamics Series, American Geophysical Union.en_US
dc.identifier.citedreferenceMaggi, A., Tape, C., Chen, M., Chao, D. & Tromp, J., 2009. An automated data-window selection algorithm for adjoint tomography, Geophys. J. Int., 178, 257–281.en_US
dc.identifier.citedreferenceMontelli, R., Nolet, G., Masters, G., Dahlen, F.A. & Hung, S.-H., 2004. Global P and PP traveltime tomography: rays versus waves, Geophys. J. Int., 158, 637 – 654.en_US
dc.identifier.citedreferenceRitsema, J. & van Heijst, H.J., 2002. Constraints on the correlation of P- and S-wave velocity heterogeneity in the mantle from P, PP, PPP, and PKPab traveltimes, Geophys. J. Int., 149, 482 – 489.en_US
dc.identifier.citedreferenceSigloch, K. & Nolet, G., 2006. Measuring finite-frequency body-wave amplitudes and traveltimes, Geophys. J. Int., 167, 271 – 287.en_US
dc.identifier.citedreferenceSigloch, K., McQuarrie, N. & Nolet, G., 2008. Two-stage subduction history under North America inferred from multiple-frequency tomography, Nat. Geosci., 1, 458 – 462.en_US
dc.identifier.citedreferenceTrampert, J. & Woodhouse, J.H., 1996. High-resolution global phase-velocity distributions, Geophys. Res. Lett., 23, 21 – 24.en_US
dc.identifier.citedreferenceVandecar, J.C. & Crosson, R.S., 1990. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least-squares, Bul. seism. Soc. Am., 80, 150 – 169.en_US
dc.identifier.citedreferenceVanDecar, J.C., James, D.E. & Assumpcao, M., 1995. Seismic evidence for a fossil mantle plume beneath South America and impluications for plate driving forces, Nature, 378, 25 – 31.en_US
dc.identifier.citedreferenceWessel, P. & Smith, W.H.F., 1995. New version of the generic mapping tools released, EOS, Trans. Am. geophys. Un., 76, 329.en_US
dc.identifier.citedreferenceWoodhouse, J.H., 1981. A note on the calculation of travel times in a transversely isotropic earth model, Phys. Earth planet. Inter., 25, 357 – 359.en_US
dc.identifier.citedreferenceWoodhouse, J.H., 1988. The calculation of the eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun, in Seismological Algorithms, pp. 321 – 370, Academic Press, London.en_US
dc.identifier.citedreferenceWoodward, R.L. & Masters, G., 1991. Global upper mantle structure from long-period differential travel-times, J. geophys. Res., 96 ( B4 ), 6351 – 6377.en_US
dc.identifier.citedreferenceYang, T. & Shen, Y., 2006. Frequency-dependent crustal correction for finite-frequency seismic tomography, Bull. seism. Soc. Am., 96, 2441 – 2448.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.