Show simple item record

Effects of elevated atmospheric carbon dioxide on amino acid and NH 4 + -N cycling in a temperate pine ecosystem

dc.contributor.authorHofmockel, Kirsten S.en_US
dc.contributor.authorSchlesinger, William H.en_US
dc.contributor.authorJackson, Robert B.en_US
dc.date.accessioned2010-06-01T20:02:25Z
dc.date.available2010-06-01T20:02:25Z
dc.date.issued2007-09en_US
dc.identifier.citationHOFMOCKEL, KIRSTEN S.; SCHLESINGER, WILLIAM H.; JACKSON, ROBERT B. (2007). "Effects of elevated atmospheric carbon dioxide on amino acid and NH 4 + -N cycling in a temperate pine ecosystem." Global Change Biology 13(9): 1950-1959. <http://hdl.handle.net/2027.42/73167>en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73167
dc.description.abstractRising atmospheric carbon dioxide (CO 2 ) is expected to increase forest productivity, resulting in greater carbon (C) storage in forest ecosystems. Because elevated atmospheric CO 2 does not increase nitrogen (N) use efficiency in many forest tree species, additional N inputs will be required to sustain increased net primary productivity (NPP) under elevated atmospheric CO 2 . We investigated the importance of free amino acids (AAs) as a source for forest N uptake at the Duke Forest Free Air CO 2 Enrichment (FACE) site, comparing its importance with that of better-studied inorganic N sources. Potential proteolytic enzyme activity was monitored seasonally, and individual AA concentrations were measured in organic horizon extracts. Potential free AA production in soils ranged from 190 to 690 nmol N g −1  h −1 and was greater than potential rates of soil NH 4 + production. Because of this high potential rate of organic N production, we determined (1) whether intact AA uptake occurs by Pinus taeda L., the dominant tree species at the FACE site, (2) if the rate of cycling of AAs is comparable with that of ammonium (NH 4 + ), and (3) if atmospheric CO 2 concentration alters the aforementioned N cycling processes. A field experiment using universally labeled ammonium ( 15 NH 4 + ) and alanine ( 13 C 3 H 7 15 NO 2 ) demonstrated that 15 N is more readily taken up by plants and heterotrophic microorganisms as NH 4 + . Pine roots and microbes take up on average 2.4 and two times as much NH 4 + 15 N compared with alanine 15 N 1 week after tracer application. N cycling through soil pools was similar for alanine and NH 4 + , with the greatest 15 N tracer recovery in soil organic matter, followed by microbial biomass, dissolved organic N, extractable NH 4 + , and fine roots. Stoichiometric analyses of 13 C and 15 N uptake demonstrated that both plants and soil microorganisms take up alanine directly, with a 13 C :  15 N ratio of 3.3 : 1 in fine roots and 1.5 : 1 in microbial biomass. Our results suggest that intact AA (alanine) uptake contributes substantially to plant N uptake in loblolly pine forests. However, we found no evidence supporting increased recovery of free AAs in fine roots under elevated CO 2 , suggesting plants will need to acquire additional N via other mechanisms, such as increased root exploration or increased N use efficiency.en_US
dc.format.extent140319 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2007 Blackwell Publishing Ltden_US
dc.subject.otherAlanineen_US
dc.subject.otherAmino Aciden_US
dc.subject.otherAmmoniumen_US
dc.subject.other13 C and 15 Nen_US
dc.subject.otherCO 2en_US
dc.subject.otherFACEen_US
dc.subject.otherMicrobial Biomass Nen_US
dc.subject.otherOrganic Nitrogen Uptakeen_US
dc.titleEffects of elevated atmospheric carbon dioxide on amino acid and NH 4 + -N cycling in a temperate pine ecosystemen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† School of Natural Resources and Environment, University of Michigan, Dana Building, Room G540, 440 Church St., Ann Arbor, MI 48109-1041, USA ,en_US
dc.contributor.affiliationotherNicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA ,en_US
dc.contributor.affiliationother† Department of Biology & Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73167/1/j.1365-2486.2007.01411.x.pdf
dc.identifier.doi10.1111/j.1365-2486.2007.01411.xen_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceBardgett RD, Streeter TC, Bol R ( 2003 ) Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology, 84, 1277 – 1287.en_US
dc.identifier.citedreferenceBennett JN, Prescott CF ( 2004 ) Organic and inorganic nitrogen nutrition of western red cedar, western hemlock and salal in mineral N-limited cedar-hemlock forests. Oceologia, 141, 468 – 476.en_US
dc.identifier.citedreferenceBremer E, van Kessel C ( 1990 ) Extractability of microbial 14 C and 15 N following addition of variable rates of labeled glucose and (NH 4 ) 2 SO 4 to soil. Soil Biology and Biochemistry, 22, 703 – 713.en_US
dc.identifier.citedreferenceBrookes PC, Landman A, Pruden G et al. ( 1985 ) Chloroform fumigation and the release of soil-nitrogen – a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837 – 842.en_US
dc.identifier.citedreferenceCabrera ML, Beare MH ( 1993 ) Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Science Society of America Journal, 57, 1007 – 1012.en_US
dc.identifier.citedreferenceDeLucia EH, Hamilton JG, Naidu SL et al. ( 1999 ) Net primary production of a forest ecosystem with experimental CO 2 enrichment. Science, 284, 1177 – 1179.en_US
dc.identifier.citedreferenceFinzi AC, Delucia EH, Hamilton JG et al. ( 2002 ) The nitrogen budget of a pine forest under free air CO 2 enrichment. Oecologia, 132, 567 – 578.en_US
dc.identifier.citedreferenceFinzi AC, Moore DJP, DeLucia EH et al. ( 2006 ) Progressive nitrogen limitation of ecosystem processes under elevated CO 2 in a warm-temperate forest. Ecology, 87, 15 – 25.en_US
dc.identifier.citedreferenceFinzi AC, Schlesinger WH ( 2003 ) Soil-N cycling in a pine forest exposed to 5 years of elevated carbon dioxide. Ecosystems, 6, 444 – 456.en_US
dc.identifier.citedreferenceGill GA, Polley HW, Johnson HB, Anderson LJ, Moherali H, Jackson RB ( 2002 ) Nonlinear grassland responses to past and future atmospheric CO 2. Nature, 417, 279 – 282.en_US
dc.identifier.citedreferenceGill RA, Anderson LJ, Polley HW, Johnson HB, Jackson RB ( 2006 ) Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO 2. Ecology, 87, 41 – 52.en_US
dc.identifier.citedreferenceHamilton JG, Delucia EH, George K et al. ( 2002 ) Forest carbon balance under elevated CO 2. Oecologia, 131, 250 – 260.en_US
dc.identifier.citedreferenceHendrey GR, Ellsworth DS, Lewin KF et al. ( 1999 ) A free-air-enrichment system for exposing tall forest vegetation to elevated atmospheric CO 2. Global Change Biology, 5, 293 – 309.en_US
dc.identifier.citedreferenceHenry HAL, Jefferies RL ( 2003 ) Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed arctic salt marsh. Journal of Ecology, 91, 627 – 636.en_US
dc.identifier.citedreferenceHofmockel KS, Schlesinger WH ( 2007 ) Carbon dioxide effects on heterotrophic dinitrogen fixation in a temperate pine forest. Soil Science Society of America, 71, 140 – 144.en_US
dc.identifier.citedreferenceHolmes WE, Zak DR, Pregitzer KS et al. ( 2003 ) Soil nitrogen transformations under Populus tremuloides, Betula papyrifera and Acer saccharum following 3 years exposure to elevated CO 2 and O-3. Global Change Biology, 9, 1743 – 1750.en_US
dc.identifier.citedreferenceHu S, Chapin III FS, Firestone MK et al. ( 2001 ) Nitrogen limitation of microbial decomposition in a grassland under elevated CO 2. Nature, 409, 188 – 191.en_US
dc.identifier.citedreferenceHungate BA, Dukes JS, Shaw MR et al. ( 2003 ) Nitrogen and climate change. Science, 302, 1512 – 1513.en_US
dc.identifier.citedreferenceJones DL, Healey JR, Willett VB et al. ( 2005 ) Dissolved organic nitrogen uptake by plants – an important N uptake pathway? Soil Biology and Biochemistry, 37, 413 – 423.en_US
dc.identifier.citedreferenceJones DL, Owen AG, Farrar JF ( 2002 ) Simple method to enable the high-resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biology and Biochemistry, 34, 1893 – 1902.en_US
dc.identifier.citedreferenceKing JY, Mosier AR, Morgan JA et al. ( 2004 ) Plant nitrogen dynamics in shortgrass steppe under elevated atmospheric carbon dioxide. Ecosystems, 7, 147 – 160.en_US
dc.identifier.citedreferenceLeake JR, Read DJ ( 1989 ) The biology of mycorrhiza in the ericaceae. 13. Some characteristics of the extracellular proteinase activity of the ericoid endophyte hymenoscyphus-ericae. New Phytologist, 112, 69 – 76.en_US
dc.identifier.citedreferenceLichter J, Lavine M, Mace KA et al. ( 2000 ) Throughfall chemistry in a loblolly pine plantation under elevated atmospheric CO 2 concentrations. Biogeochemistry, 50, 73 – 93.en_US
dc.identifier.citedreferenceMatamala R, Schlesinger WH ( 2000 ) Effects of elevated atmospheric CO 2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biology, 6, 967 – 979.en_US
dc.identifier.citedreferenceMcFarland JW, Ruess RW, Kielland K et al. ( 2002 ) Cycling dynamics of NH 4 + and amino acid nitrogen in soils of a deciduous boreal forest ecosystem. Ecosystems, 5, 775 – 788.en_US
dc.identifier.citedreferenceMillington DS, Kodo N, Terada N, Roe D, Chace DH ( 1991 ) The analysis of diagnostic markers of genetic-disorders in human blood and urine using tandem mass-spectrometry with liquid secondary ion mass-spectrometry. International Journal of Mass Spectrometry and Ion Processes, 111, 211 – 228.en_US
dc.identifier.citedreferenceNadelhoffer KJ, Downs MR, Fry B ( 1999 ) Sinks for N-15-enriched additions to an oak forest and a red pine plantation. Ecological Applications, 9, 72 – 86.en_US
dc.identifier.citedreferenceNÄsholm T, Ekblad A, Nordin A et al. ( 1998 ) Boreal forest plants take up organic nitrogen. Nature, 392, 914 – 916.en_US
dc.identifier.citedreferenceNÄsholm T, Huss-Danell K, Hogberg P ( 2001 ) Uptake of glycine by field grown wheat. New Phytologist, 150, 59 – 63.en_US
dc.identifier.citedreferenceNÄsholm T, Persson J ( 2001 ) Plant acquisition of organic nitrogen in boreal forests. Physiologia Plantarum, 111, 419 – 426.en_US
dc.identifier.citedreferenceNordin A, Schmidt IK, Shaver GR ( 2004 ) Nitrogen uptake by arctic soil microbes and plants in relation to soil nitrogen supply. Ecology, 85, 955 – 962.en_US
dc.identifier.citedreferencePerakis SS, Hedin LO ( 2001 ) Fluxes and fates of nitrogen in soil of an unpolluted old – growth temperate forest, Southern Chile. Ecology, 82, 2245 – 2260.en_US
dc.identifier.citedreferencePersson J, GardestrÖm, NÄsholm T ( 2006 ) Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris. Journal of Experimental Biology, 57, 2651 – 2659.en_US
dc.identifier.citedreferenceSchimel JP, Bennett J ( 2004 ) Nitrogen mineralization: Challenges of a changing paradigm. Ecology, 85, 591 – 602.en_US
dc.identifier.citedreferenceSchimel JP, Chapin FS ( 1996 ) Tundra plant uptake of amino acid and NH 4 + nitrogen in situ: plants compete well for amino acid N. Ecology, 77, 2142 – 2147.en_US
dc.identifier.citedreferenceSchjoerring JK, Husted S, Mack G, Mattsson M ( 2002 ) The regulation of ammonium translocation in plants. Journal of Experimental Botany, 53, 883 – 890.en_US
dc.identifier.citedreferenceSkujins J ( 1967 ) Enzymes in soil. In: Soil Biochemistry, Vol. 1 ( eds McLaren AD, Peterson GH ), pp. 371 – 414. Marcel Dekker, New York.en_US
dc.identifier.citedreferenceStark JM, Hart SC ( 1996 ) Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Science Society of America Journal, 60, 1846 – 1855.en_US
dc.identifier.citedreferenceTabatabai MA ( 1994 ) Soil Enzymes. In: Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties ( eds Weaver RW, Angle S, Bottomley P ), pp. 775 – 833. SSSA, Madison, WI.en_US
dc.identifier.citedreferenceWatanabe K, Hayano K ( 1995 ) Seasonal-variation of soil protease activities and their relation to proteolytic bacteria and Bacillus spp in paddy field soil. Soil Biology and Biochemistry, 27, 197 – 203.en_US
dc.identifier.citedreferenceWitt C, Gaunt JL, Galicia CC et al. ( 2000 ) A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biology and Fertility of Soils, 30, 510 – 519.en_US
dc.identifier.citedreferenceZak DR, Groffman PM, Pregitzer KS, Christensen S, Tiedje JM ( 1990 ) The vernal dam – plant microbe competition for nitrogen in northern hardwood forests. Ecology, 71, 651 – 656.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.