Show simple item record

Mathematical and computational approaches can complement experimental studies of host–pathogen interactions

dc.contributor.authorKirschner, Denise E.en_US
dc.contributor.authorLinderman, Jennifer J.en_US
dc.date.accessioned2010-06-01T20:10:53Z
dc.date.available2010-06-01T20:10:53Z
dc.date.issued2009-04en_US
dc.identifier.citationKirschner, Denise E.; Linderman, Jennifer J. (2009). "Mathematical and computational approaches can complement experimental studies of host–pathogen interactions." Cellular Microbiology 11(4): 531-539. <http://hdl.handle.net/2027.42/73304>en_US
dc.identifier.issn1462-5814en_US
dc.identifier.issn1462-5822en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73304
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19134115&dopt=citationen_US
dc.description.abstractIn addition to traditional and novel experimental approaches to study host–pathogen interactions, mathematical and computer modelling have recently been applied to address open questions in this area. These modelling tools not only offer an additional avenue for exploring disease dynamics at multiple biological scales, but also complement and extend knowledge gained via experimental tools. In this review, we outline four examples where modelling has complemented current experimental techniques in a way that can or has already pushed our knowledge of host–pathogen dynamics forward. Two of the modelling approaches presented go hand in hand with articles in this issue exploring fluorescence resonance energy transfer and two-photon intravital microscopy. Two others explore virtual or ‘ in silico ’ deletion and depletion as well as a new method to understand and guide studies in genetic epidemiology. In each of these examples, the complementary nature of modelling and experiment is discussed. We further note that multi-scale modelling may allow us to integrate information across length (molecular, cellular, tissue, organism, population) and time (e.g. seconds to lifetimes). In sum, when combined, these compatible approaches offer new opportunities for understanding host–pathogen interactions.en_US
dc.format.extent334329 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2009 Blackwell Publishing Ltden_US
dc.titleMathematical and computational approaches can complement experimental studies of host–pathogen interactionsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, 6730 Medical Science Bldg. II, University of Michigan Medical School, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.en_US
dc.identifier.pmid19134115en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73304/1/j.1462-5822.2009.01281.x.pdf
dc.identifier.doi10.1111/j.1462-5822.2009.01281.xen_US
dc.identifier.sourceCellular Microbiologyen_US
dc.identifier.citedreferenceAlarcon, T., Byrne, H.M., and Maini, P.K. ( 2004 ) Towards whole-organ modelling of tumour growth. Prog Biophys Mol Biol 85: 451 – 472.en_US
dc.identifier.citedreferenceAlcais, A., Remus, N., Abel, L., and Casanova, J.L. ( 2001 ) Genetic susceptibility to tuberculosis: from monogenic to polygenic inheritance. Sepsis 4: 237 – 246.en_US
dc.identifier.citedreferencevon Andrian, U.H., and Mempel, T.R. ( 2003 ) Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3: 867 – 878.en_US
dc.identifier.citedreferenceBeltman, J.B., Maree, A.F., Lynch, J.N., Miller, M.J., and de Boer, R.J. ( 2007 ) Lymph node topology dictates T cell migration behavior. J Exp Med 204: 771 – 780.en_US
dc.identifier.citedreferenceBlythe, M.J., Doytchinova, I.A., and Flower, D.R. ( 2002 ) JenPep: a database of quantitative functional peptide data for immunology. Bioinformatics 18: 434 – 439.en_US
dc.identifier.citedreferenceCastellino, F., Huang, A.Y., Altan-Bonnet, G., Stoll, S., Scheinecker, C., and Germain, R.N. ( 2006 ) Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell–dendritic cell interaction. Nature 440: 890 – 895.en_US
dc.identifier.citedreferenceCatron, D.M., Itano, A.A., Pape, K.A., Mueller, D.L., and Jenkins, M.K. ( 2004 ) Visualizing the first 50 h of the primary immune response to a soluble antigen. Immunity 21: 341 – 347.en_US
dc.identifier.citedreferenceCelli, S., Garcia, Z., Beuneu, H., and Bousso, P. ( 2008 ) Decoding the dynamics of T cell–dendritic cell interactions in vivo. Immunol Rev 221: 182 – 187.en_US
dc.identifier.citedreferenceChang, S.T., Linderman, J.J., and Kirschner, D.E. ( 2005 ) Multiple mechanisms allow Mycobacterium tuberculosis to continuously inhibit MHC class II-mediated antigen presentation by macrophages. Proc Natl Acad Sci USA 102: 4530 – 4535.en_US
dc.identifier.citedreferenceChang, S.T., Ghosh, D., Kirschner, D.E., and Linderman, J.J. ( 2006 ) Peptide length-based prediction of peptide-MHC class II binding. Bioinformatics 22: 2761 – 2767.en_US
dc.identifier.citedreferenceChang, S.T., Linderman, J.J., and Kirschner, D.E. ( 2008 ) Effect of multiple genetic polymorphisms on antigen presentation and susceptibility to Mycobacterium tuberculosis infection. Infect Immun 76: 3221 – 3232.en_US
dc.identifier.citedreferenceDietz, K., and Heesterbeek, J.A.P. ( 2000 ) Bernoulli was ahead of modern epidemiology. Nature 408: 513 – 514.en_US
dc.identifier.citedreferenceFarr, W. ( 1866 ) On the cattle plague. J Soc Sci 1: 349 – 351.en_US
dc.identifier.citedreferenceFranke, R., Muller, M., Wundrack, N., Gilles, E.D., Klamt, S., Kahne, T., and Naumann, M. ( 2008 ) Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction. BMC Syst Biol 2: 4.en_US
dc.identifier.citedreferenceGanusov, V.V., and Antia, R. ( 2005 ) Pathology during acute infections: contributions of intracellular pathogens and the CTL response. Biol Lett 1: 239 – 242.en_US
dc.identifier.citedreferenceGoldstein, B., Faeder, J.R., and Hlavacek, W.S. ( 2004 ) Mathematical and computational models of immune-receptor signalling. Nat Rev Immunol 4: 445 – 456.en_US
dc.identifier.citedreferenceHanna, P.C., Acosta, D., and Collier, R.J. ( 1993 ) On the role of macrophages in anthrax. Proc Natl Acad Sci USA 90: 10198 – 10201.en_US
dc.identifier.citedreferenceHoppe, A.D., Shorte, S.L., Swanson, J.A., and Heintzmann, R. ( 2008 ) Three-dimensional FRET reconstruction microscopy for analysis of dynamic molecular interactions in live cells. Biophys J 95: 400 – 418.en_US
dc.identifier.citedreferenceHoppe, A.D., Seveau, S., and Swanson, J.A. ( 2009 ) Live cell fluorescence microscopy to study microbial pathogenesis. Cell Micro 11: in press. DOI: 10.1111/j.1462-5822.2009. 01283.xen_US
dc.identifier.citedreferenceKemp, M.L., Wille, L., Lewis, C.L., Nicholson, L.B., and Lauffenburger, D.A. ( 2007 ) Quantitative network signal combinations downstream of TCR activation can predict IL-2 production response. J Immunol 178: 4984 – 4992.en_US
dc.identifier.citedreferenceKenworthy, A.K. ( 2001 ) Imaging protein–protein interactions using fluorescence resonance energy transfer microscopy. Methods 24: 289 – 296.en_US
dc.identifier.citedreferenceKermack, W.O., and McKendrick, A.G. ( 1927 ) A contribution to the mathematical theory of epidemics. Proc R Soc Lond B Biol Sci 115: 700 – 721.en_US
dc.identifier.citedreferenceKinzer-Ursem, T.L., Sutton, K.L., Waller, A., Omann, G.M., and Linderman, J.J. ( 2006 ) Multiple receptor states are required to describe both kinetic binding and activation of neutrophils via N-formyl peptide receptor ligands. Cell Signal 18: 1732 – 1747.en_US
dc.identifier.citedreferenceKirschner, D.E., Chang, S.T., Riggs, T.W., Perry, N., and Linderman, J.J. ( 2007 ) Toward a multiscale model of antigen presentation in immunity. Immunol Rev 216: 93 – 118.en_US
dc.identifier.citedreferenceKonjufca, V., and Miller, M.J. ( 2009 ) Two-photon microscopy of host–pathogen interactions: acquiring a dynamic picture of infection in vivo. Cell Micro 11: in press. DOI: 10.1111/1462-5822.2009.01289.xen_US
dc.identifier.citedreferenceLazarevic, V., Nolt, D., and Flynn, J.L. ( 2005 ) Long-term control of Mycobacterium tuberculosis infection is mediated by dynamic immune responses. J Immunol 175: 1107 – 1117.en_US
dc.identifier.citedreferenceLio, D., Marino, V., Serauto, A., Gioia, V., Scola, L., Crivello, A., et al. ( 2002 ) Genotype frequencies of the +874T→A single nucleotide polymorphism in the first intron of the interferon-gamma gene in a sample of Sicilian patients affected by tuberculosis. Eur J Immunogenet 29: 371 – 374.en_US
dc.identifier.citedreferenceLu, Y.J., Gross, J., Bogaert, D., Finn, A., Bagrade, L., Zhang, Q., et al. ( 2008 ) Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathog 4: e1000159.en_US
dc.identifier.citedreferenceMiller, M.J., Wei, S.H., Parker, I., and Cahalan, M.D. ( 2002 ) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296: 1869 – 1873.en_US
dc.identifier.citedreferenceMiller, M.J., Safrina, O., Parker, I., and Cahalan, M.D. ( 2004a ) Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J Exp Med 200: 847 – 856.en_US
dc.identifier.citedreferenceMiller, M.J., Hejazi, A.S., Wei, S.H., Cahalan, M.D., and Parker, I. ( 2004b ) T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc Natl Acad Sci USA 101: 998 – 1003.en_US
dc.identifier.citedreferenceMoran, A., Ma, X., Reich, R.A., and Graviss, E.A. ( 2007 ) No association between the +874T/A single nucleotide polymorphism in the IFN-gamma gene and susceptibility to TB. Int J Tuberc Lung Dis 11: 113 – 115.en_US
dc.identifier.citedreferenceNielsen, M., Lundegaard, C., Blicher, T., Peters, B., Sette, A., Justesen, S., et al. ( 2008 ) Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol 4: e1000107.en_US
dc.identifier.citedreferenceNowak, M., and May, R. ( 2000 ) Virus Dynamics – Mathematical Principles of Immunology and Virology. Oxford, NY: Oxford Press.en_US
dc.identifier.citedreferencePerelson, A.S. ( 1989 ) Immune network theory. Immunol Rev 110: 5 – 36.en_US
dc.identifier.citedreferencePerelson, A.S. ( 1999 ) Viral kinetics and mathematical models. Am J Med 107: 49S – 52S.en_US
dc.identifier.citedreferencePeters, B., Sidney, J., Bourne, P., Bui, H.H., Buus, S., Doh, G., et al. ( 2005 ) The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol 3: e91.en_US
dc.identifier.citedreferencePreston, S.P., Waters, S.L., Jensen, O.E., Heaton, P.R., and Pritchard, D.I. ( 2006 ) T-cell motility in the early stages of the immune response modeled as a random walk amongst targets. Phys Rev E Stat Nonlin Soft Matter Phys 74: 011910.en_US
dc.identifier.citedreferenceRiggs, T., Walts, A., Perry, N., Bickle, L., Lynch, J.N., Myers, A., et al. ( 2008 ) A comparison of random vs. chemotaxis-driven contacts of T cells with dendritic cells during repertoire scanning. J Theor Biol 250: 732 – 751.en_US
dc.identifier.citedreferenceRoss, R. ( 1916 ) An application of the theory of probabilities to the study of a priori pathometry. Part I. Proc R Soc Lond B Biol Sci 92: 204 – 230.en_US
dc.identifier.citedreferenceSegel, L. ( 1984 ) Modeling Dynamic Phenomena in Molecular and Cellular Biology. New York: Cambridge University Press.en_US
dc.identifier.citedreferenceSegel, L., and Cohen, I. ( 2001 ) Design Principles for the Immune System and Other Distributed Autonomous Systems. New York: Oxford University Press.en_US
dc.identifier.citedreferenceSud, D., Bigbee, C., Flynn, J.L., and Kirschner, D.E. ( 2006 ) Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection. J Immunol 176: 4296 – 4314.en_US
dc.identifier.citedreferenceSullivan, A.D., Wigginton, J., and Kirschner, D. ( 2001 ) The coreceptor mutation CCR5Delta32 influences the dynamics of HIV epidemics and is selected for by HIV. Proc Natl Acad Sci USA 98: 10214 – 10219.en_US
dc.identifier.citedreferenceTeran-Escandon, D., Teran-Ortiz, L., Camarena-Olvera, A., Gonzalez-Avila, G., Vaca-Marin, M.A., Granados, J., and Selman, M. ( 1999 ) Human leukocyte antigen-associated susceptibility to pulmonary tuberculosis: molecular analysis of class II alleles by DNA amplification and oligonucleotide hybridization in Mexican patients. Chest 115: 428 – 433.en_US
dc.identifier.citedreferenceWallis, R.S., Broder, M.S., Wong, J.Y., Hanson, M.E., and Beenhouwer, D.O. ( 2004 ) Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin Infect Dis 38: 1261 – 1265.en_US
dc.identifier.citedreferenceWigginton, J.E., and Kirschner, D. ( 2001 ) A model to predict cell-mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis. J Immunol 166: 1951 – 1967.en_US
dc.identifier.citedreferenceWitt, C., Raychaudhuri, S., and Chakraborty, A.K. ( 2005 ) Movies, measurement, and modeling: the three Ms of mechanistic immunology. J Exp Med 201: 501 – 504.en_US
dc.identifier.citedreferenceWu, J.Q., and Pollard, T.D. ( 2005 ) Counting cytokinesis proteins globally and locally in fission yeast. Science 310: 310 – 314.en_US
dc.identifier.citedreferenceYates, A., Bergmann, C., Hemmen, J., Stark, J., and Callard, R. ( 2000 ) Cytokine-modulated regulation of helper T cell populations. J Theor Biol 206: 539 – 560.en_US
dc.identifier.citedreferenceYates, A., Callard, R., and Stark, J. ( 2004 ) Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making. J Theor Biol 231: 181 – 196.en_US
dc.identifier.citedreferenceYoung, D., and Dye, C. ( 2006 ) The development and impact of tuberculosis vaccines. Cell 124: 683 – 687.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.