Show simple item record

SpoT governs Legionella pneumophila differentiation in host macrophages

dc.contributor.authorDalebroux, Zachary D.en_US
dc.contributor.authorEdwards, Rachel L.en_US
dc.contributor.authorSwanson, Michele S.en_US
dc.date.accessioned2010-06-01T20:11:11Z
dc.date.available2010-06-01T20:11:11Z
dc.date.issued2009-02en_US
dc.identifier.citationDalebroux, Zachary D.; Edwards, Rachel L.; Swanson, Michele S. (2009). "SpoT governs Legionella pneumophila differentiation in host macrophages." Molecular Microbiology 71(3): 640-658. <http://hdl.handle.net/2027.42/73309>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73309
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19040633&dopt=citationen_US
dc.description.abstractDuring its life cycle, Legionella pneumophila alternates between a replicative and a transmissive state. To determine their contributions to L. pneumophila differentiation, the two ppGpp synthetases, RelA and SpoT, were disrupted. Synthesis of ppGpp was required for transmission, as relA spoT mutants were killed during entry to and exit from macrophages. RelA, which senses amino acid starvation induced by serine hydroxamate, is dispensable in macrophages, as relA mutants spread efficiently. SpoT monitors fatty acid biosynthesis (FAB), since following cerulenin treatment, wild-type and relA strains expressed the flaA transmissive gene, but relA spoT mutants did not. As in Escherichia coli , the SpoT response to FAB perturbation likely required an interaction with acyl-carrier protein (ACP), as judged by the failure of the spoT-A413E allele to rescue transmissive trait expression of relA spoT bacteria. Furthermore, SpoT was essential for transmission between macrophages, since secondary infections by relA spoT mutants were restored by induction of spoT , but not relA . To resume replication, ppGpp must be degraded, as mutants lacking spoT hydrolase activity failed to convert from the transmissive to the replicative phase in either bacteriological medium or macrophages. Thus, L. pneumophila requires SpoT to monitor FAB and to alternate between replication and transmission in macrophages.en_US
dc.format.extent706573 bytes
dc.format.extent190402 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 Blackwell Publishingen_US
dc.titleSpoT governs Legionella pneumophila differentiation in host macrophagesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationotherDepartment of Microbiology & Immunology anden_US
dc.identifier.pmid19040633en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73309/1/j.1365-2958.2008.06555.x.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73309/2/MMI_6555_sm_Figure_S1.pdf
dc.identifier.doi10.1111/j.1365-2958.2008.06555.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAbdelrahman, Y.M., and Belland, R.J. ( 2005 ) The chlamydial developmental cycle. FEMS Microbiol Rev 29: 949 – 959.en_US
dc.identifier.citedreferenceAberg, A., Shingler, V., and Balsalobre, C. ( 2006 ) (p)ppGpp regulates type 1 fimbriation of Escherichia coli by modulating the expression of the site-specific recombinase FimB. Mol Microbiol 60: 1520 – 1533.en_US
dc.identifier.citedreferenceAbu-Zant, A., Asare, R., Graham, J.E., and Abu Kwaik, Y. ( 2006 ) Role for RpoS but not RelA of Legionella pneumophila in modulation of phagosome biogenesis and adaptation to the phagosomal microenvironment. Infect Immun 74: 3021 – 3026.en_US
dc.identifier.citedreferenceAlli, O.A., Gao, L.Y., Pedersen, L.L., Zink, S., Radulic, M., Doric, M., and Abu Kwaik, Y. ( 2000 ) Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila. Infect Immun 68: 6431 – 6440.en_US
dc.identifier.citedreferenceBachman, M.A., and Swanson, M.S. ( 2001 ) RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol Microbiol 40: 1201 – 1214.en_US
dc.identifier.citedreferenceBattesti, A., and Bouveret, E. ( 2006 ) Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol Microbiol 62: 1048 – 1063.en_US
dc.identifier.citedreferenceBerger, K.H., and Isberg, R.R. ( 1993 ) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7: 7 – 19.en_US
dc.identifier.citedreferenceBougdour, A., and Gottesman, S. ( 2007 ) ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. Proc Natl Acad Sci USA 104: 12896 – 12901.en_US
dc.identifier.citedreferenceBraeken, K., Moris, M., Daniels, R., Vanderlyden, J., and Michiels, J. ( 2006 ) New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol 14: 45 – 54.en_US
dc.identifier.citedreferenceBruggemann, H., Hagman, A., Jules, M., Sismeiro, O., Dillies, M.A., Gouyette, C., et al. ( 2006 ) Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol 8: 1228 – 1240.en_US
dc.identifier.citedreferenceByrne, B., and Swanson, M.S. ( 1998 ) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66: 3029 – 3034.en_US
dc.identifier.citedreferenceCashel, M. ( 1969 ) The control of ribonucleic acid synthesis in Escherichia coli. J Biol Chem 244: 3133 – 3141.en_US
dc.identifier.citedreferenceCashel, M. ( 1994 ) Detection of (p)ppGpp accumulation patterns in Escherichia coli mutants. In Adolph, K.W. (ed.). Methods in Molecular Genetics, Vol. 3. Molecular Microbiology Techniques, Part A. New York: Academic Press, pp. 341 – 356.en_US
dc.identifier.citedreferenceChatfield, C.H., and Cianciotto, N.P. ( 2007 ) The secreted pyomelanin pigment of Legionella pneumophila confers ferric reductase activity. Infect Immun 75: 4062 – 4070.en_US
dc.identifier.citedreferenceDahl, J.L., Kraus, C.N., Boshoff, H.I., Doan, B., Foley, K., Avarbock, D., et al. ( 2003 ) The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc Natl Acad Sci USA 100: 10026 – 10031.en_US
dc.identifier.citedreferenceDurfee, T., Hansen, A.M., Zhi, H., Blattner, F.R., and Jin, D.J. ( 2008 ) Transcription profiling of the stringent response in Escherichia coli. J Bacteriol 190: 1084 – 1096.en_US
dc.identifier.citedreferenceErickson, D.L., Lines, J.L., Pesci, E.C., Venturi, V., and Storey, D.G. ( 2004 ) Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster. Infect Immun 72: 5638 – 5645.en_US
dc.identifier.citedreferenceGarduÑo, R.A., Chong, A., and Faulkner, G. ( 2008 ) Developmental cycle: differentiation of Legionella pneumophila. In Legionella: Molecular Microbiology. Heuner, K., and Swanson, M. (eds). Norfolk: Caister Academic Press, pp. 55 – 73.en_US
dc.identifier.citedreferenceGaynor, E.C., Wells, D.H., MacKichan, J.K., and Falkow, S. ( 2005 ) The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol Microbiol 56: 8 – 27.en_US
dc.identifier.citedreferenceGentry, D.R., and Cashel, M. ( 1996 ) Mutational analysis of the Escherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation. Mol Microbiol 19: 1373 – 1384.en_US
dc.identifier.citedreferenceHammer, B.K., and Swanson, M.S. ( 1999 ) Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol 33: 721 – 731.en_US
dc.identifier.citedreferenceHammer, B.K., Tateda, E.S., and Swanson, M.S. ( 2002 ) A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol Microbiol 44: 107 – 118.en_US
dc.identifier.citedreferenceHeath, R.J., Jackowski, S., and Rock, C.O. ( 1994 ) Guanosine tetraphosphate inhibition of fatty acid and phospholipid synthesis in Escherichia coli is relieved by overexpression of glycerol-3-phosphate acyltransferase ( plsB ). J Biol Chem 269: 26584 – 26590.en_US
dc.identifier.citedreferenceKarakousis, P.C., Yoshimatsu, T., Lamichhane, G., Woolwine, S.C., Nuermberger, E.L., Grosset, J., and Bishai, W.R. ( 2004 ) Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice. J Exp Med 200: 647 – 657.en_US
dc.identifier.citedreferenceMagnusson, L.U., Farewell, A., and Nystrom, T. ( 2005 ) ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13: 236 – 242.en_US
dc.identifier.citedreferenceMolofsky, A.B., and Swanson, M.S. ( 2003 ) Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol 50: 445 – 461.en_US
dc.identifier.citedreferenceMolofsky, A.B., and Swanson, M.S. ( 2004 ) Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53: 29 – 40.en_US
dc.identifier.citedreferenceMolofsky, A.B., Shetron-Rama, L.M., and Swanson, M.S. ( 2005 ) Components of the Legionella pneumophila flagellar regulon contribute to multiple virulence traits, including lysosome avoidance and macrophage death. Infect Immun 73: 5720 – 5734.en_US
dc.identifier.citedreferenceMorales, V.M., Backman, A., and Bagdasarian, M. ( 1991 ) A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene 97: 39 – 47.en_US
dc.identifier.citedreferenceMouery, K., Rader, B.A., Gaynor, E.C., and Guillemin, K. ( 2006 ) The stringent response is required for Helicobacter pylori survival of stationary phase, exposure to acid, and aerobic shock. J Bacteriol 188: 5494 – 5500.en_US
dc.identifier.citedreferenceParedes, C.J., Alsaker, K.V., and Papoutsakis, E.T. ( 2005 ) A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 3: 969 – 978.en_US
dc.identifier.citedreferencePizarro-Cerda, J., and Tedin, K. ( 2004 ) The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene expression. Mol Microbiol 52: 1827 – 1844.en_US
dc.identifier.citedreferencePotrykus, K., and Cashel, M. ( 2008 ) (p)ppGpp: still magical? Annu Rev Microbiol 62: 35 – 51.en_US
dc.identifier.citedreferencePrimm, T.P., Andersen, S.J., Mizrahi, V., Avarbock, D., Rubin, H., and Barry, C.E., 3rd ( 2000 ) The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 182: 4889 – 4898.en_US
dc.identifier.citedreferenceSauer, J.D., Bachman, M.A., and Swanson, M.S. ( 2005 ) The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proc Natl Acad Sci USA 102: 9924 – 9929.en_US
dc.identifier.citedreferenceSeyfzadeh, M., Keener, J., and Nomura, M. ( 1993 ) spoT -dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli. Proc Natl Acad Sci USA 90: 11004 – 11008.en_US
dc.identifier.citedreferenceShin, S., and Roy, C.R. ( 2008 ) Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell Microbiol 10: 1209 – 1220.en_US
dc.identifier.citedreferenceSong, M., Kim, H.J., Kim, E.Y., Shin, M., Lee, H.C., Hong, Y., et al. ( 2004 ) ppGpp-dependent stationary phase induction of genes on Salmonella pathogenicity island 1. J Biol Chem 279: 34183 – 34190.en_US
dc.identifier.citedreferenceSpira, B., and Yagil, E. ( 1998 ) The relation between ppGpp and the PHO regulon in Escherichia coli. Mol Gen Genet 257: 469 – 477.en_US
dc.identifier.citedreferenceSrivatsan, A., and Wang, J.D. ( 2008 ) Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol 11: 100 – 105.en_US
dc.identifier.citedreferenceStone, B.J., and Abu Kwaik, Y. ( 1999 ) Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol 181: 1395 – 1402.en_US
dc.identifier.citedreferenceSwanson, M.S., and Hammer, B.K. ( 2000 ) Legionella pneumophila pathogesesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54: 567 – 613.en_US
dc.identifier.citedreferenceSwanson, M.S., and Isberg, R.R. ( 1995 ) Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect Immun 63: 3609 – 3620.en_US
dc.identifier.citedreferenceTaylor, C.M., Beresford, M., Epton, H.A., Sigee, D.C., Shama, G., Andrew, P.W., and Roberts, I.S. ( 2002 ) Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J Bacteriol 184: 621 – 628.en_US
dc.identifier.citedreferenceTesh, M.J., and Miller, R.D. ( 1981 ) Amino acid requirements for Legionella pneumophila growth. J Clin Microbiol 13: 865 – 869.en_US
dc.identifier.citedreferenceTesh, M.J., Morse, S.A., and Miller, R.D. ( 1983 ) Intermediary metabolism in Legionella pneumophila: utilization of amino acids and other compounds as energy sources. J Bacteriol 154: 1104 – 1109.en_US
dc.identifier.citedreferenceThompson, A., Rolfe, M.D., Lucchini, S., Schwerk, P., Hinton, J.C., and Tedin, K. ( 2006 ) The bacterial signal molecule, ppGpp, mediates the environmental regulation of both the invasion and intracellular virulence gene programs of Salmonella. J Biol Chem 281: 30112 – 30121.en_US
dc.identifier.citedreferenceTosa, T., and Pizer, L.I. ( 1971 ) Biochemical bases for the antimetabolite action of l-serine hydroxamate. J Bacteriol 106: 972 – 982.en_US
dc.identifier.citedreferenceTraxler, M.F., Summers, S.M., Nguyen, H.T., Zacharia, V.M., Hightower, G.A., Smith, J.T., and Conway, T. ( 2008 ) The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 68: 1128 – 1148.en_US
dc.identifier.citedreferenceVoth, D.E., and Heinzen, R.A. ( 2007 ) Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell Microbiol 9: 829 – 840.en_US
dc.identifier.citedreferenceWarner, D.F., and Mizrahi, V. ( 2006 ) Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clin Microbiol Rev 19: 558 – 570.en_US
dc.identifier.citedreferenceXiao, H., Kalman, M., Ikehara, K., Zemel, S., Glaser, G., and Cashel, M. ( 1991 ) Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266: 5980 – 5990.en_US
dc.identifier.citedreferenceZusman, T., Gal-Mor, O., and Segal, G. ( 2002 ) Characterization of a Legionella pneumophila relA insertion mutant and roles of RelA and RpoS in virulence gene expression. J Bacteriol 184: 67 – 75.en_US
dc.identifier.citedreferenceZusman, D.R., Scott, A.E., Yang, Z., and Kirby, J.R. ( 2007 ) Chemosensory pathways, motility and development in Myxococcus xanthus. Nat Rev Microbiol 5: 862 – 872.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.