Show simple item record

Low-temperature alteration and magnetic changes of variably altered pillow basalts

dc.contributor.authorWang, Damingen_US
dc.contributor.authorVan der Voo, Roben_US
dc.contributor.authorPeacor, Donald R.en_US
dc.date.accessioned2010-06-01T20:19:33Z
dc.date.available2010-06-01T20:19:33Z
dc.date.issued2006-01en_US
dc.identifier.citationWang, Daming; Van der Voo, Rob; Peacor, Donald R. (2006). "Low-temperature alteration and magnetic changes of variably altered pillow basalts." Geophysical Journal International 164(1): 25-35. <http://hdl.handle.net/2027.42/73443>en_US
dc.identifier.issn0956-540Xen_US
dc.identifier.issn1365-246Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73443
dc.description.abstractPillow basalt fragments from the East Pacific Rise, dredged during the Phoenix expedition, often show discoloured rims due to alteration. A suite of nine pillow basalts with such discoloured rims and ranging in age between 200 and 820 ka has been characterized in terms of their Fe–Ti-oxide mineralogy and rock magnetic properties. These large pillow fragments show relatively unaltered grey interiors, surrounded by darker, concentric halos, which vary in thickness as measured from glassy pillow rims and surfaces caused by large cracks penetrating into the original pillow interior. The discoloured zones are characterized by precipitation of abundant secondary minerals, such as Fe 3+ -rich clays that filled vesicle spaces. Fe–Ti oxides in subsamples from discoloured rims and grey interiors have been investigated with electron microscopy and rock magnetic techniques. The subsamples come from traverses that are parallel to the outer glassy pillow rims, allowing us to study the low-temperature alteration effects and rock magnetic properties without having to take variable grain size into account. Not surprisingly, titanomaghemites in discoloured rims are, in a general sense, oxidized to a higher degree ( z typically >0.55) than those in the relatively unaltered grey interior ( z typically <0.55). However, exceptions are numerous and reveal that oxidation state of the Fe–Ti oxides and visible alteration in the discoloured rims are not directly correlated. Moreover, the alteration front of the discoloured rims does not generally coincide with a pronounced jump in z . The titanomaghemite within the discoloured rims appears to have oxidized relatively quickly, reaching z > 0.6 within 200 000 yr. The difference between the oxidation states of titanomaghemite within the grey pillow interior and the discoloured rims gradually diminishes with increasing age, so that for samples with ages of 800 ka the oxidation state of titanomaghemites in the grey interior approaches that of the discoloured rim. Our study demonstrates that visible discolouration of pillow basalts is not a suitable proxy for z . Because average Ti content can vary from sample to sample, Curie temperatures are also inaccurate proxies for z . If one wants to study possible correlations between z and rock magnetic parameters, the best technique is to determine z for each subsample by using transmission electron microscopy (TEM), electron microprobe, MÖssbauer or similar techniques. In agreement with many (but not all) previous observations on natural samples, we find that bulk coercivity ( H c ) , and high-field susceptibility (Χ hf ) increase, whereas low-field susceptibility (Χ l f ) , natural remanent magnetization intensity and saturation magnetization ( M s ) generally decrease with increasing oxidation state.en_US
dc.format.extent268948 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 The Authors Journal compilation © 2005 RASen_US
dc.subject.otherHysteresis Parametersen_US
dc.subject.otherMaghemitizationen_US
dc.subject.otherNRM Intensityen_US
dc.subject.otherOceanic Basaltsen_US
dc.titleLow-temperature alteration and magnetic changes of variably altered pillow basaltsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, Ann Arbor, MI 48109-1063, USA. E-mail: voo@umich.eduen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73443/1/j.1365-246X.2005.02819.x.pdf
dc.identifier.doi10.1111/j.1365-246X.2005.02819.xen_US
dc.identifier.sourceGeophysical Journal Internationalen_US
dc.identifier.citedreferenceAkimoto, T., Kinoshita, H. & Furuta, T., 1984. Electron probe microanalysis study on processes of low-temperature oxidation of titanomagnetite, Earth planet. Sci. Lett., 71, 263 – 278.en_US
dc.identifier.citedreferenceAlt, J.C., 2004. Alteration of the upper oceanic crust: mineralogy, chemistry, and processes, in Hydrogeology of the Oceanic Lithosphere, pp. 456 – 488, eds Elderfield, H. & Davis, E., Cambridge University Press, New York.en_US
dc.identifier.citedreferenceAlt, J.C. & Teagle, D.A.H., 2003. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801, Chem. Geol., 201, 191 – 211.en_US
dc.identifier.citedreferenceBanerjee, S.K., 1971. Decay of marine magnetic anomalies by ferrous ion diffusion, Nature-Physical Science, 229, 181 – 183.en_US
dc.identifier.citedreferenceBatiza, R., Niu, Y., Karsten, J.L., Boger, W., Potts, E., Norby, L. & Butler, R., 1996. Steady and non-steady state magma chambers below the East Pacific Rise, Geophys. Res. Lett., 23, 221 – 224.en_US
dc.identifier.citedreferenceBeske-Diehl, S.J., 1990. Magnetization during low-temperature oxidation of seafloor basalts: no large scale chemical remagnetization, J. geophys. Res., 95, 21 413 – 21 432.en_US
dc.identifier.citedreferenceBeske-Diehl, S.J. & Soroka, W.L., 1984. Magnetic properties of variably oxidized pillow basalt, Geophys. Res. Lett., 11, 225 – 228.en_US
dc.identifier.citedreferenceBleil, U. & Petersen, N., 1983. Variations in magnetization intensity of ocean floor basalts: reply, Nature, 306, 92 – 92.en_US
dc.identifier.citedreferenceBÖhlke, J.K., Honnorez, J., Honnorez-Guerstein, B.M., Muehlenbachs, K. & Petersen, N., 1981. Heterogeneous alteration of the upper oceanic crust: correlation of rock chemistry, magnetic properties, and O Isotope ratios with alteration patterns in basalts from site 396B, DSDP, J. geophys. Res., 86, 7935 – 7950.en_US
dc.identifier.citedreferenceBrown, K., 1981. Laboratory simulation of submarine maghemitization, Geophys. J. R. astr. Soc., 65, 273 – 273.en_US
dc.identifier.citedreferenceDunlop, D.J., 1995. Magnetism in rocks, J. geophys. Res., 100, 2161 – 2174.en_US
dc.identifier.citedreferenceDunlop, D.J. & Özdemir, Ö., 1997. Rock magnetism: Fundamentals and Frontiers, p. 573, Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceFuruta, T., 1993. Magnetic properties and ferromagnetic mineralogy of oceanic basalts, Geophys. J. Int., 113, 95 – 114.en_US
dc.identifier.citedreferenceGee, J. & Kent, D.V., 1997. Magnetization of axial lavas from the southern East Pacific Rise (14°–23° S): geochemical controls on magnetic properties, J. geophys. Res., 102, 24 873 – 24 886.en_US
dc.identifier.citedreferenceGee, J. & Kent, D.V., 1998. Magnetic telechemistry and magmatic segmentation on the southern east Pacific rise, Earth planet. Sci. Lett., 164, 379 – 385.en_US
dc.identifier.citedreferenceGrommÉ, S., Wright, T.L. & Peck, D.L., 1969. Magnetic properties and oxidation of iron-titanium oxide minerals in Alae and Makaopuhi lava lakes, Hawaii, J. geophys. Res., 74, 5277 – 5294.en_US
dc.identifier.citedreferenceGrommÉ, S., Mankinen, E.A., Marshall, M. & Coe, R.S., 1979. Geomagnetic paleointensities by the Thelliers' method from submarine pillow basalts: effects of seafloor weathering, J. geophys. Res., 84, 3553 – 3575.en_US
dc.identifier.citedreferenceHodych, J.P. & Matzka, J., 2004. Saturation magnetostriction and its low-temperature variation inferred for natural titanomaghemites: implications for internal stress control of coercivity in oceanic basalts, Geophys. J. Int., 157, 1017 – 1026.en_US
dc.identifier.citedreferenceIrving, E., 1970. The Mid-Atlantic Ridge at 45°N, XIV, oxidation and magnetic properties of basalts: review and discussion, Can. J. Earth Sci., 7, 1528 – 1538.en_US
dc.identifier.citedreferenceJohnson, H.P. & Hall, J.M., 1978. Detailed rock magnetic and opaque mineralogy study of basalts from Nazca Plate, Geophys. J. R. astr. Soc., 52, 45 – 64.en_US
dc.identifier.citedreferenceJohnson, H.P. & Pariso, J.E., 1993. Variations in oceanic crustal magnetization: systematic changes in the last 160 million years, J. geophys. Res., 98, 435 – 445.en_US
dc.identifier.citedreferenceKelso, P.R., Banerjee, S.K. & Worm, H.U., 1991. The effect of low-temperature hydrothermal alteration on the remanent magnetization of synthetic titanomagnetites: a case for acquisition of chemical remanent magnetization, J. geophys. Res., 96, 19 545 – 19 553.en_US
dc.identifier.citedreferenceKent, D.V. & Gee, J., 1994. Grain size-dependent alteration and the magnetization of oceanic basalts, Science, 265, 1561 – 1563.en_US
dc.identifier.citedreferenceMarshall, M. & Cox, A., 1971. Magnetism of pillow basalts and their petrology, Geol. soc. Am. Bull., 82, 537 – 552.en_US
dc.identifier.citedreferenceMarshall, M. & Cox, A., 1972. Magnetic changes in pillow basalt due to seafloor weathering, J. geophys. Res., 77, 6459 – 6469.en_US
dc.identifier.citedreferenceNishitani, T. & Kono, M., 1983. Curie temperature and lattice constant of oxidized titanomagnetite, Geophys. J. R. astr. Soc., 74, 585 – 600.en_US
dc.identifier.citedreferenceÖzdemir, Ö., 1987. Inversion of titanomaghemites, Phys. Earth Planet. Inter., 46, 184 – 196.en_US
dc.identifier.citedreferenceÖzdemir, Ö. & Dunlop, D.J., 1985. An experimental study of chemical remanent magnetizations of synthetic monodomain titanomaghemites with initial thermoremanent magnetizations, J. geophys. Res., 90, 1513 – 1523.en_US
dc.identifier.citedreferenceOzima, M., 1971. Characteristic Thermomagnetic curve in submarine basalts, J. geophys. Res., 76, 2051 – 2056.en_US
dc.identifier.citedreferencePetersen, N. & Vali, H., 1987. Observation of shrinkage cracks in ocean floor titanomagnetites, Phys. Earth planet. Inter., 46 ( 1–3 ), 197 – 205.en_US
dc.identifier.citedreferenceReadman, P.W. & O'Reilly, W., 1972. Magnetic properties of oxidized (cation-deficient) titanomagnetites (Fe, Ti) 3 O 4, J. Geomag. Geoelectr., 24, 69 – 90.en_US
dc.identifier.citedreferenceSayanagi, K. & Tamaki, K., 1992. Long term variations in magnetization intensity with crustal age in the Northeast Pacific, Atlantic, and Southeast Indian Oceans, Geophys. Res. Lett., 19, 2369 – 2372.en_US
dc.identifier.citedreferencevan Aken, P.A. & Liebscher, B., 2002. Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L 23 electron energy-loss near-edge spectra, Phys. Chem. Miner., 29, 188 – 200.en_US
dc.identifier.citedreferenceVine, F.J. & Matthews, D.H., 1963. Magnetic anomalies over oceanic ridges, Nature, 199, 947 – 949.en_US
dc.identifier.citedreferenceVogt, P.R. & Johnson, G.L., 1973. Magnetic telechemistry of oceanic crust, Nature, 245, 373 – 375.en_US
dc.identifier.citedreferenceWorm, H.U. & Banerjee, S.K., 1984. Aqueous low temperature oxidation of titanomagnetite, Geophys. Res. Lett., 11, 169 – 172.en_US
dc.identifier.citedreferenceXu, W.X., Peacor, D.R., Dollase, W.A., Van der Voo, R. & Beaubouef, R., 1997. Transformation of titanomagnetite to titanomaghemite: a slow, two-step, oxidation-ordering process in MORB, Am. Miner., 82, 1101 – 1110.en_US
dc.identifier.citedreferenceZhou, W.M., Peacor, D.R., Van der Voo, R. & Mansfield, J.F., 1999a. Determination of lattice parameter, oxidation state, and composition of individual titanomagnetite/titanomaghemite grains by transmission electron microscopy, J. geophys. Res., 104, 17 689 – 17 702.en_US
dc.identifier.citedreferenceZhou, W.M., Van der Voo, R. & Peacor, D.R., 1999b. Preservation of pristine titanomagnetite in older ocean-floor basalts and its significance for paleointensity studies, Geology, 27, 1043 – 1046.en_US
dc.identifier.citedreferenceZhou, W.M., Van der Voo, R., Peacor, D.R., Wang, D.M. & Zhang, Y.X., 2001. Low-temperature oxidation in MORB of titanomagnetite to titanomaghemite: a gradual process with implications for marine magnetic anomaly amplitudes, J. geophys. Res., 106, 6409 – 6421.en_US
dc.identifier.citedreferenceZhou, W.M., Van der Voo, R., Peacor, D.R. & Zhang, Y.X., 2000. Variable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB, Earth planet. Sci. Lett., 179, 9 – 20.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.