Show simple item record

PARSIMONY JACKKNIFING OUTPERFORMS NEIGHBOR-JOINING

dc.contributor.authorFarris, James S.en_US
dc.contributor.authorAlbert, Victor A.en_US
dc.contributor.authorKällersjö, Marien_US
dc.contributor.authorLipscomb, Dianaen_US
dc.contributor.authorKluge, Arnold G.en_US
dc.date.accessioned2010-06-01T20:25:50Z
dc.date.available2010-06-01T20:25:50Z
dc.date.issued1996-06en_US
dc.identifier.citationFarris, James S.; Albert, Victor A.; KÄllersjÖ, Mari; Lipscomb, Diana; Kluge, Arnold G. (1996). "PARSIMONY JACKKNIFING OUTPERFORMS NEIGHBOR-JOINING." Cladistics 12(2): 99-124. <http://hdl.handle.net/2027.42/73544>en_US
dc.identifier.issn0748-3007en_US
dc.identifier.issn1096-0031en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73544
dc.description.abstractBecause they are designed to produced just one tree, neighbor-joining programs can obscure ambiguities in data. Ambiguities can be uncovered by resampling, but existing neighbor-joining programs may give misleading bootstrap frequencies because they do not suppress zero-length branches and/or are sensitive to the order of terminals in the data. A new procedure, parsimony jackknifing, overcomes these problems while running hundreds of times faster than existing programs for neighbor-joining bootstrapping. For analysis of large matrices, parsimony jackknifing is hundreds of thousands of times faster than extensive branch-swapping, yet is better able to screen out poorly-supported groups.en_US
dc.format.extent392546 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1996 The Willi Hennig Societyen_US
dc.titlePARSIMONY JACKKNIFING OUTPERFORMS NEIGHBOR-JOININGen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDivision of Reptiles and Amphibians, Museum of Zoology, The University of Michigan, Ann Arbor, Michigan, 48109-1079, U.S.A.en_US
dc.contributor.affiliationotherMolekylÄrsystematiska laboratoriet, Naturhistoriska riksmuseet, Box 50007, Stockholm, S 104 05, Swedenen_US
dc.contributor.affiliationotherNew York Botanical Garden, Bronx, New York, 10458-5126, U.S.A.en_US
dc.contributor.affiliationotherDepartment of Biology, George Washington University, Washington, D.C. 20052, U.S.A.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73544/1/j.1096-0031.1996.tb00196.x.pdf
dc.identifier.doi10.1111/j.1096-0031.1996.tb00196.xen_US
dc.identifier.sourceCladisticsen_US
dc.identifier.citedreferenceAlbert, V. A. and K. Bremer. 1993. Flying kiwis and pattern information in biogeography. Cur. Biol. 3: 324 – 325.en_US
dc.identifier.citedreferenceAlbert, V. A., S. E. Williams, and M. W. Chase. 1992. Carnivorous plants: Phylogeny and structural evolution. Science 257: 1491 – 1495.en_US
dc.identifier.citedreferenceBackeljau, T., L. De Bruyn, H. De Wolf, K., Jordaens, S., Van Dongen, and B. Winnepenninckx. 1996. Multiple UPGMA and neighbor-joining trees and the performance of some computer packages. Mol. Biol. Evol. 13: 309 – 313.en_US
dc.identifier.citedreferenceBremer, K. 1988. The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795 – 803.en_US
dc.identifier.citedreferenceCarpenter, J. M. 1996. Uninformative bootstrapping. Cladistics 12 ( in press ).en_US
dc.identifier.citedreferenceChase, M., D. Soltis, R. Olmstead, D. Morgan, D. Les, B. Mishler, M. Duvall, R. Price, H. Hills, Y. Qui, K. Kron, J. Rettig, E. Conti, J. Palmer, J. Manhert, K. Sytsma, H. Michaels, W. Kress, K. Karol, W. Clark, M. Hedren, B. Gaut, R. Jansen, K. Kim, C. Wimpee, J. Smith, G. Furnier, S. Strauss, Q. Xiang, G. Plunkett, P. Soltis, S. Swench, S. Williams, P. Gadek, C. Quinn, L. Eguiarte, E. Golenberg, G. Learn, S. Graham, S. Barett, S. Dayanandan, and V. A. Albert. 1993. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 528 – 580.en_US
dc.identifier.citedreferenceCooper, A., C. Maourer-Chauvire, G. K. Chambers, A. Von Haeseler, A. C. Wilson, and S. Paabo. 1992. Independent origins of New Zealand moas and kiwis. Proc. Nat. Acad. Sci. U.S.A. 89: 8741 – 8744.en_US
dc.identifier.citedreferenceEfron, B. and G. Gong. 1983. A leisurely look at the bootstrap, the jackknife, and cross-validation. Amer. Statist. 37: 36 – 48.en_US
dc.identifier.citedreferenceFarris, J. S. 1970. Methods for computing Wagner trees. Syst. Zool. 19: 83 – 92.en_US
dc.identifier.citedreferenceFarris, J. S. 1971. The hypothesis of nonspecificity and taxonomic congruence. Ann. Rev. Ecol. Syst. 2: 277 – 302.en_US
dc.identifier.citedreferenceFarris, J. S. 1972. Estimating phylogenetic trees from distance matrices. Am. Nat. 106: 645 – 668.en_US
dc.identifier.citedreferenceFarris, J. S. 1977. On the phenetic approach to vertebrate classification. In: M. P. Hecht, P. Goody, and B. M. Hecht, ( eds. ) Major patterns in vertebrate evolution. Plenum, New York, pp. 823 – 850.en_US
dc.identifier.citedreferenceFarris, J. S., and M. Kallersjo. 1994. Pro bono publico. Cladistics 10: 85 – 88.en_US
dc.identifier.citedreferenceFelsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783 – 791.en_US
dc.identifier.citedreferenceFelsenstein, J. 1993. PHYLIP, ver. 3.5c. Department of Genetics, University of Washington, Seattle.en_US
dc.identifier.citedreferenceGustafsson, M. H. G. and K. Bremer. 1995. Morphology and phylogenetic relationships of the Astreraceae, Calyceraceae, Campanulaceae, Goodeniaceae, and related families (Asterales). Amer. Jour. Bot. 82: 250 – 265.en_US
dc.identifier.citedreferenceHarshman, J. 1994. The effect of irrelevant characters on bootstrap values. Syst. Biol. 43: 419 – 424.en_US
dc.identifier.citedreferenceKumar, S., K. Tamura, and M. Nei. 1993. MEGA: Molecular evolutionary genetics analysis, ver. 1.01. Pennsylvania State University, University Park.en_US
dc.identifier.citedreferenceKallersjo, M., J. S. Farris, A. G. Kluge and C. Bult. 1992. Skewness and permutation. Cladistics 8: 275 – 287.en_US
dc.identifier.citedreferenceMickevich, M. F. and J. S. Farris. 1981. The implications of congruence in Menidia. Syst. Zool. 30: 351 – 370.en_US
dc.identifier.citedreferenceOlmstead, R. G., B. Bremer, K. M. Scott, and J. D. Palmer. 1993. A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. Ann. Missouri Bot. Gard. 80: 700 – 722.en_US
dc.identifier.citedreferencePlatnick, N. I., C. E. Griswold, and J. A. Coddington. 1991. On missing entries in cladistic analysis. Cladistics 7: 337 – 344.en_US
dc.identifier.citedreferenceRohlf, F. J. 1993. NTSYS-pc, version 1.8. Applied Biostatistics Inc., Setauket, New York.en_US
dc.identifier.citedreferenceRodrigo, A. G., P. R. Bergquist, and P. L. Bergquist. 1994. Inadequate support for an evolutionary link between the Metazoa and the Fungi. Syst. Biol. 43: 578 – 584.en_US
dc.identifier.citedreferenceRzhetsky, A. and M. Nei. 1992. A simple method for estimating and testing minimum-evolution trees. Mol. Biol. Evol. 9: 945 – 967.en_US
dc.identifier.citedreferenceRzhetsky, A. and M. Nei. 1994. METREE: a program for inferring and testing minimum-evolution trees. CABIOS 10: 409 – 412.en_US
dc.identifier.citedreferenceSaitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 6: 514 – 525.en_US
dc.identifier.citedreferenceSourdis, J. and M. Nei. 1988. Relative efficiencies of maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree. Mol. Biol. Evol. 5: 298 – 311.en_US
dc.identifier.citedreferenceStoneking, M., S. Sherry, and L. Vigilant. 1992. Geographic origin of human mitochondrial DNA revisited. Syst. Biol. 41: 384 – 391.en_US
dc.identifier.citedreferenceStudier, J. A. and K. L. Kepler. 1988. A note on the neighbor-joining algorithm of Saitou and Nei. Mol. Biol. Evol. 5: 729 – 731.en_US
dc.identifier.citedreferenceWainwright, P., G. Hinkle, M. Sogin, and S. Stickel. 1993. Monophyletic origins of the Metazoa: an evolutionary link with the Fungi. Science 260: 340 – 342.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.