Show simple item record

Applications of bioluminescence imaging to the study of infectious diseases

dc.contributor.authorHutchens, Marthaen_US
dc.contributor.authorLuker, Gary D.en_US
dc.date.accessioned2010-06-01T20:29:48Z
dc.date.available2010-06-01T20:29:48Z
dc.date.issued2007-10en_US
dc.identifier.citationHutchens, Martha; Luker, Gary D. (2007). "Applications of bioluminescence imaging to the study of infectious diseases." Cellular Microbiology 9(10): 2315-2322. <http://hdl.handle.net/2027.42/73608>en_US
dc.identifier.issn1462-5814en_US
dc.identifier.issn1462-5822en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73608
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17587328&dopt=citationen_US
dc.description.abstractBioluminescence imaging (BLI) has emerged as a powerful new method to analyse infectious diseases in animal models. BLI offers real-time monitoring of spatial and temporal progression of infection in the same animal, as opposed to euthanizing a cohort of animals and quantifying colony or plaque forming units at multiple time points. Pathogens or mice are engineered to express genetically encoded luciferase enzymes from bacteria, insects, or the sea pansy. The seminal study showing the feasibility of detecting microbially generated luminescence within a living mouse was published by Contag and colleagues in 1995, using Salmonella typhimurium transformed with the lux operon from Photorhabdus luminescens . Following this, they and others performed many studies of infection by bioluminescent Gram-negative and Gram-positive bacteria. Viruses can also be engineered to encode luciferase. Our laboratory has used bioluminescent reporter viruses to follow HSV and vaccinia pathogenesis; others have used an alphavirus or novirhabdovirus. Recently, even eukaryotic parasites Plasmodium, Leishmania and Toxoplasma have been transformed with luciferase and yielded unique insights into their in vivo behaviour. We expect that both the range of organisms and the molecular events able to be studied by BLI will continue to expand, yielding important insights into mechanisms of pathogenesis.en_US
dc.format.extent355456 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2007 The Authors; Journal compilation © 2007 Blackwell Publishing Ltden_US
dc.titleApplications of bioluminescence imaging to the study of infectious diseasesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMicrobiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationumUniversity of Michigan Medical School, 109 Zina Pitcher Place, A526 BSRB, Ann Arbor, MI48109-2200, USA.en_US
dc.contributor.affiliationotherImmunology Program,en_US
dc.contributor.affiliationotherDepartments of Radiology anden_US
dc.identifier.pmid17587328en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73608/1/j.1462-5822.2007.00995.x.pdf
dc.identifier.doi10.1111/j.1462-5822.2007.00995.xen_US
dc.identifier.sourceCellular Microbiologyen_US
dc.identifier.citedreferenceBhaumik, S., and Gambhir, S. ( 2002 ) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 99: 377 – 382.en_US
dc.identifier.citedreferenceBurgos, J.S., Guzman-Sanchez, F., Sastre, I., Fillat, C., and Valdivieso, F. ( 2006 ) Non-invasive bioluminescence imaging for monitoring herpes simplex virus type 1 hematogenous infection. Microbes Infect 8: 1330 – 1338.en_US
dc.identifier.citedreferenceContag, C., Contag, P., Mullins, J., Spilman, S., Stevenson, D., and Benaron, D. ( 1995 ) Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 18: 593 – 603.en_US
dc.identifier.citedreferenceCook, S., and Griffin, D. ( 2003 ) Luciferase imaging of a neurotropic viral infection in intact animals. J Virol 77: 5333 – 5338.en_US
dc.identifier.citedreferenceCorbisier, P., Ji, G., Nuyts, G., Mergeay, M., and Silver, S. ( 2004 ) LuxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. FEMS Microbiol Lett 110: 231 – 238.en_US
dc.identifier.citedreferenceDoyle, T.C., Nawotka, K.A., Kawahara, C.B., Francis, K.P., and Contag, P.R. ( 2006a ) Visualizing fungal infections in living mice using bioluminescent pathogenic Candida albicans strains transformed with the firefly luciferase gene. Microb Pathog 40: 82 – 90.en_US
dc.identifier.citedreferenceDoyle, T.C., Nawotka, K.A., Purchio, A.F., Akin, A.R., Francis, K.P., and Contag, P.R. ( 2006b ) Expression of firefly luciferase in Candida albicans and its use in the selection of stable transformants. Microb Pathog 40: 69 – 81.en_US
dc.identifier.citedreferenceFrancis, K., Joh, D., Bellinger-Kawahara, C., Hawkinson, M., Purchio, T., and Contag, P. ( 2000 ) Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun 68: 3594 – 3600.en_US
dc.identifier.citedreferenceFrancis, K., Yu, J., Bellinger-Kawahara, C., Joh, D., Hawkinson, M., Xiao, G., et al. ( 2001 ) Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel Gram-positive lux transposon. Infect Immun 69: 3350 – 3358.en_US
dc.identifier.citedreferenceFranke-Fayard, B., Janse, C.J., Cunha-Rodrigues, M., Ramesar, J., BÜscher, P., Que, I., et al. ( 2005 ) Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proc Natl Acad Sci USA 102: 11468 – 11473.en_US
dc.identifier.citedreferenceHardy, J., Francis, K., DeBoer, M., Chu, P., Gibbs, K., and Contag, C. ( 2004 ) Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303: 851 – 853.en_US
dc.identifier.citedreferenceHarmache, A., LeBerre, M., Droineau, S., Giovannini, M., and Bremont, M. ( 2006 ) Bioluminescence imaging of live infected salmonids reveals that the fin bases are the major portal of entry for Novirhabdovirus. J Virol 80: 3655 – 3659.en_US
dc.identifier.citedreferenceHill, P.J., Rees, C.E., Winson, M.K., and Stewart, G.S. ( 1993 ) The application of lux genes. Biotechnol Appl Biochem 17: 3 – 14.en_US
dc.identifier.citedreferenceHitziger, N., Dellacasa, I., Albiger, B., and Barragan, A. ( 2005 ) Dissemination of Toxoplasma gondii to immunoprivileged organs and role of toll/interleukin-1 receptor signalling for host resistance assessed by in vivo bioluminescence imaging. Cell Microbiol 7: 837 – 848.en_US
dc.identifier.citedreferenceKadurugamuwa, J.L., Modi, K., Coquoz, O., Rice, B., Smith, S., Contag, P.R., and Purchio, T. ( 2005 ) Reduction of astrogliosis by early treatment of pneumococcal meningitis measured by simultaneous imaging, in vivo, of the pathogen and host response. Infect Immun 73: 7836 – 7843.en_US
dc.identifier.citedreferenceLang, T., Goyard, S., Lebastard, M., and Milon, G. ( 2005 ) Bioluminescent leishmania expressing luciferase for rapid and high throughput screening of drugs acting on amastigote-harbouring macrophages and for quantitative real-time monitoring of parasitism features in living mice. Cell Microbiol 7: 383 – 392.en_US
dc.identifier.citedreferenceLuker, G., Bardill, J., Prior, J., Pica, C., Piwnica-Worms, D., and Leib, D. ( 2002 ) Noninvasive bioluminescence imaging of herpes simplex virus type 1 infection and therapy in living mice. J Virol 76: 12149 – 12161.en_US
dc.identifier.citedreferenceLuker, G., Prior, J., Song, J., Pica, C., and Leib, D. ( 2003 ) Bioluminescence imaging reveals systemic dissemination of HSV-1 in the absence of interferon receptors. J Virol 77: 11082 – 11093.en_US
dc.identifier.citedreferenceLuker, K., Hutchens, M., Schultz, T., Pekosz, A., and Luker, G. ( 2005 ) Bioluminescence imaging of vaccinia virus: effects of interferon on viral replication and spread. Virology 341: 284 – 300.en_US
dc.identifier.citedreferenceLuker, K.E., Schultz, T., Romine, J., Leib, D.A., and Luker, G.D. ( 2006 ) Transgenic reporter mouse for bioluminescence imaging of herpes simplex virus I infection in living mice. Virology 347: 286 – 295.en_US
dc.identifier.citedreferenceMarques, C.N.H., Salisbury, V.C., Greenman, J., Bowker, K.E., and Nelson, S.M. ( 2005 ) Discrepancy between viable counts and light output as viability measurements, following ciprofloxacin challenge of self-bioluminescent Pseudomonas aeruginosa biofilms. J Antimicrob Chemother 56: 665 – 671.en_US
dc.identifier.citedreferenceParoo, Z., Bollinger, R., Braasch, D.A., Richer, E., Corey, D.R., Antich, P.P., and Mason, R.P. ( 2004 ) Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden. Mol Imaging 3: 117 – 124.en_US
dc.identifier.citedreferencePichler, A., Prior, J., and Piwnica-Worms, D. ( 2004 ) Imaging reversal of multidrug resistance in living mice with bioluminescence: MDR1 P-glycoprotein transports coelenterazine. Proc Natl Acad Sci USA 101: 1702 – 1707.en_US
dc.identifier.citedreferenceRivera, R., Hutchens, M., Luker, K.E., Sonstein, J., Curtis, J.L., and Luker, G.D. ( 2007 ) Murine alveolar macrophages limit replication of vaccinia virus. Virology 363: 48 – 58.en_US
dc.identifier.citedreferenceRochetta, H.L., Boylan, C.J., Foley, J.W., Iversen, P.W., Letourneau, D.L., McMillian, C.L., et al. ( 2001 ) Validation of a noninvasive, real-time imaging technology using bioluminescent Escherichia coli in the neutropenic mouse thigh model of infection. Antimicrob Agents Chemother 48: 129 – 137.en_US
dc.identifier.citedreferenceSaeij, J.P.J., Boyle, J.P., Grigg, M.E., Arrizabalaga, G., and Boothroyd, J.C. ( 2005 ) Bioluminescence imaging of Toxoplasma gondii infection in living mice reveals dramatic differences between the strains. Infect Immun 73: 695 – 702.en_US
dc.identifier.citedreferenceSteidler, L., Yu, W., Fiers, W., and Remaut, E. ( 1996 ) The expression of the Photinus pyralis luciferase gene in Staphylococcus aureus cowan I allows the development of a live amplifiable tool for immunodetection. Appl Environ Microbiol 62: 2356 – 2359.en_US
dc.identifier.citedreferenceWiles, S., Clare, S., Harker, J., Huett, A., Young, D., Dougan, G., and Frankel, G. ( 2004 ) Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen citrobacter rodentium. Cell Microbiol 6: 963 – 972.en_US
dc.identifier.citedreferenceWiles, S., Dougan, G., and Frankel, G. ( 2005 ) Emergence of a ‘hyperinfectious’ bacterial state after passage of citrobacter rodentium through the host gastrointestinal tract. Cell Microbiol 7: 1163 – 1172.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.