Show simple item record

Phylogenetic analysis of host–symbiont specificity and codivergence in bioluminescent symbioses

dc.contributor.authorDunlap, Paul V.en_US
dc.contributor.authorAst, Jennifer C.en_US
dc.contributor.authorKimura, Seishien_US
dc.contributor.authorFukui, Atsushien_US
dc.contributor.authorYoshino, Tetsuoen_US
dc.contributor.authorEndo, Hiromitsuen_US
dc.date.accessioned2010-06-01T20:38:55Z
dc.date.available2010-06-01T20:38:55Z
dc.date.issued2007-10en_US
dc.identifier.citationDunlap, Paul V.; Ast, Jennifer C.; Kimura, Seishi; Fukui, Atsushi; Yoshino, Tetsuo; Endo, Hiromitsu (2007). "Phylogenetic analysis of host–symbiont specificity and codivergence in bioluminescent symbioses." Cladistics 23(5): 507-532. <http://hdl.handle.net/2027.42/73754>en_US
dc.identifier.issn0748-3007en_US
dc.identifier.issn1096-0031en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73754
dc.description.abstractSeveral groups of marine fishes and squids form mutualistic bioluminescent symbioses with luminous bacteria. The dependence of the animal on its symbiont for light production, the animal's specialized anatomical adaptations for harboring bacteria and controlling light emission, and the host family bacterial species specificity characteristic of these associations suggest that bioluminescent symbioses are tightly coupled associations that might involve coevolutionary interactions. Consistent with this possibility, evidence of parallel cladogenesis has been reported for squid–bacterial associations. However, genetic adaptations in the bacteria necessary for and specific to symbiosis have not been identified, and unlike obligate endosymbiotic associations in which the bacteria are transferred vertically, bacterially bioluminescent hosts acquire their light-organ symbionts from the environment with each new host generation. These contrasting observations led us to test the hypotheses of species specificity and codivergence in bioluminescent symbioses, using an extensive sampling of naturally formed associations. Thirty-five species of fish in seven teleost families (Chlorophthalmidae, Macrouridae, Moridae, Trachichthyidae, Monocentridae, Acropomatidae, Leiognathidae) and their light-organ bacteria were examined. Phylogenetic analysis of a taxonomically broad sampling of associations was based on mitochondrial 16S rRNA and cytochrome oxidase I gene sequences for the fish and on recA , gyrB and luxA sequences for bacteria isolated from the light organs of these specimens. In a fine-scale test focused on Leiognathidae, phylogenetic analysis was based also on histone H3 subunit and 28S rRNA gene sequences for the fish and on gyrB , luxA , luxB , luxF and luxE sequences for the bacteria. Deep divergences were revealed among the fishes, and clear resolution was obtained between clades of the bacteria. In several associations, bacterial species identities contradicted strict host family bacterial species specificity. Furthermore, the fish and bacterial phylogenies exhibited no meaningful topological congruence; evolutionary divergence of host fishes was not matched by a similar pattern of diversification in the symbiotic bacteria. Re-analysis of data reported for squids and their luminous bacteria also revealed no convincing evidence of codivergence. These results refute the hypothesis of strict host family bacterial species specificity and the hypothesis of codivergence in bioluminescent symbioses. © The Willi Hennig Society 2007.en_US
dc.format.extent3223442 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2007 The Willi Hennig Societyen_US
dc.titlePhylogenetic analysis of host–symbiont specificity and codivergence in bioluminescent symbiosesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherFisheries Research Laboratory, Mie University, Shima, Mie, Japanen_US
dc.contributor.affiliationotherSchool of Fisheries and Marine Technology, Tokai University, Shimizu-Orido, Shizuoka, Japanen_US
dc.contributor.affiliationotherDepartment of Marine Sciences, University of the Ryukyus, Nishihara, Okinawa, Japanen_US
dc.contributor.affiliationotherLaboratory of Marine Biology, Kochi University, Kochi, Japanen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73754/1/j.1096-0031.2007.00157.x.pdf
dc.identifier.doi10.1111/j.1096-0031.2007.00157.xen_US
dc.identifier.sourceCladisticsen_US
dc.identifier.citedreferenceAst, J.C., Dunlap, P.V., 2004. Phylogenetic analysis of the lux operon distinguishes two evolutionarily distinct clades of Photobacterium leiognathi. Arch. Microbiol. 181, 352 – 361.en_US
dc.identifier.citedreferenceAst, J.C., Dunlap, P.V., 2005. Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group. Environ. Microbiol. 7, 1641 – 1654.en_US
dc.identifier.citedreferenceBardey, V., Vallet, C., Robas, N., Charpentier, B., Thouvenot, B., Mougin, A., Hajnsdorf, E., Regnier, P., Springer, M., Branlant, C., 2005. Characterization of the molecular mechanisms involved in the differential production of erythrose-4-phosphate dehydrogenase, 3-phosphoglycerate kinase and class II fructose-1,6-bisphosphate aldolase in Escherichia coli. Mol. Microbiol. 57, 1265 – 1287.en_US
dc.identifier.citedreferenceBaumann, P., Baumann, L., 1981. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In: M.P. Starr, H. Stolp, H.G. TrÜper, A. Balows, H.G. Schlegel (Eds.), The Prokaryotes: a Handbook on Habitats, Isolation, and Identification of Bacteria. Springer-Verlag, Berlin, pp. 1302 – 1331.en_US
dc.identifier.citedreferenceBaumann, P., Baumann, L., Lai, C.-Y., Rouhbakhsh, 1995. Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu. Rev. Microbiol. 49, 55 – 94.en_US
dc.identifier.citedreferenceBoisvert, H., Chatelain, R., Bassot, J.M., 1967. Étude d'un Photobacterium isolÉ de l'organe lumineux des poissons Leiognathidae. Ann. Inst. Pasteur (Paris), 112, 520 – 524.en_US
dc.identifier.citedreferenceBoschi-Muller, S., Azza, S., Pollastro, D., Corbier, C., Branlant, G., 1997. Comparative enzymatic properties of GapB-encoded erythrose-4-phosphate dehydrogenase of Escherichia coli and phosphorylating glyceraldehyde-3-phsosphate dehydrogenase. J. Biol. Chem. 272, 15106 – 15112.en_US
dc.identifier.citedreferenceCary, S.C., Giovanonni, S.J., 1993. Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc. Natl Acad. Sci USA. 90, 5695 – 5699.en_US
dc.identifier.citedreferenceCharleston, M.A., 1998. Jungles: a new solution to the host-parasite phylogeny reconciliation problem. Math. Biosci. 149, 191 – 223.en_US
dc.identifier.citedreferenceCharleston, M.A., Page, R.D.M., 2002. Treemap, Version 2.0. Available from the authors at: http://taxonomy.zoology.gla.ac.uk/∼mac/treemap/index.htmlen_US
dc.identifier.citedreferenceCharleston, M.A., Perkins, S.L., 2006. Traversing the tangle: algorithms and applications for cophylogenetic studies. J. Biomed. Informat. 39, 62 – 71.en_US
dc.identifier.citedreferenceClaes, M.F., Dunlap, P.V., 2000. Aposymbiotic culture of the sepiolid squid Euprymna scolopes: role of the symbiotic bacterium Vibrio fischeri in host animal growth, development, and light organ morphogenesis. J. Exp. Zool. 286, 280 – 296.en_US
dc.identifier.citedreferenceDunlap, P.V., 1984. Physiological and morphological state of the symbiotic bacteria from light organs of ponyfish. Biol. Bull. 167, 410 – 425.en_US
dc.identifier.citedreferenceDunlap, P.V., 1985. Physiological and morphological state of the symbiotic bacteria from light organs of ponyfish. Biol. Bull. 167, 410 – 425.en_US
dc.identifier.citedreferenceDunlap, P.V., Ast, J.C., 2005. Genomic and phylogenetic characterization of the luminous bacteria symbiotic with the deep-sea fish Chlorophthalmus albatrossis (Aulopiformes: Chlorophthalmidae). Appl. Environ. Microbiol. 71, 930 – 939.en_US
dc.identifier.citedreferenceDunlap, P.V., Jiemjit, A., Ast, J.C., Pearce, M.M., Marques, R.R., Lavilla-Pitogo, C.R., 2004. Genomic polymorphism in symbiotic populations of Photobacterium leiognathi. Environ. Microbiol. 6, 145 – 158.en_US
dc.identifier.citedreferenceDunlap, P.V., Kita-Tsukamoto, K., 2006. Luminous bacteria. In: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt (Eds.), The Prokaryotes, a Handbook on the Biology of Bacteria, 3rd edn, Vol. 2. Springer, New York, pp. 863 – 892.en_US
dc.identifier.citedreferenceFidopiastis, P.M., von Boletzky, S., Ruby, E.G., 1998. A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J. Bacteriol. 180, 59 – 64.en_US
dc.identifier.citedreferenceFroese, R., Pauly, D. (Eds.), 2004. FishBase, Ver. 04. Published online. http://www.fishbase.org.en_US
dc.identifier.citedreferenceFukasawa, S., Dunlap, P.V., 1986. Identification of luminous bacteria isolated from the light organs of the squid, Doryteuthis kensaki. Agri. Biol. Chem. 50, 1645 – 1646.en_US
dc.identifier.citedreferenceGoloboff, P.A., Farris, J.S., Nixon, K.C., 2005. TNT: Tree Analysis Using New Technology, Version 1.0. Distributed by the authors.en_US
dc.identifier.citedreferenceGraf, J., Ruby, E.G., 1998. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl Acad. Sci. USA. 95, 1818 – 1822.en_US
dc.identifier.citedreferenceHastings, J.W., 1971. Light to hide by: ventral luminescence to camouflage the silhouette. Science, 173, 1016 – 1017.en_US
dc.identifier.citedreferenceHastings, J.W., Makemson, J., Dunlap, P.V., 1987. How are growth and luminescence regulated independently in light organ symbionts? Symbiosis, 4, 3 – 24.en_US
dc.identifier.citedreferenceHastings, J.W., Nealson, K.H., 1981. The symbiotic luminous bacteria. In: M.P. Starr, H. Stolp, H.G. TrÜper, A. Balows, H.G. Schlegel (Eds.), The Prokaryotes: a Handbook on Habitats, Isolation, and Identification of Bacteria. Springer-Verlag, Berlin, pp. 1332 – 1345.en_US
dc.identifier.citedreferenceHaygood, M.G., 1993. Light organ symbioses in fishes. Crit. Rev. Microbiol. 19, 191 – 216.en_US
dc.identifier.citedreferenceHaygood, M.G., Distel, D.L., 1993. Bioluminescent symbionts of flashlight fishes and deep-sea anglerfishes form unique lineages related to the genus Vibrio. Nature 363, 154 – 156.en_US
dc.identifier.citedreferenceHaygood, M.G., Distel, D.L., Herring, P.J., 1992. Polymerase chain reaction and 16S rRNA gene sequences from the luminous bacterial symbionts of two deep-sea anglerfishes. J. Mar. Biol. Assoc. UK, 71, 149 – 159.en_US
dc.identifier.citedreferenceHaygood, M.G., Tebo, B.M., Nealson, K.H., 1984. Luminous bacteria of a monocentrid fish ( Monocentris japonicus ) and two anomalopid fishes ( Photoblepharon palpebratus and Kryptophaneron alfredi ): population sizes and growth within the light organs, and rates of release into the seawater. Mar. Biol. 78, 249 – 254.en_US
dc.identifier.citedreferenceHerring, P.J., Morin, J.G., 1978. Bioluminescence in fishes. In: P.J. Herring (Ed.), Bioluminescence in Action. Academic Press, London, pp. 273 – 329.en_US
dc.identifier.citedreferenceHosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M., Fukatsu, T., 2006. Strict host–symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol. 4, e337.en_US
dc.identifier.citedreferenceJackson, A.P., 2004. A reconciliation analysis of host switching in plant-fungal symbioses. Evolution 58, 1909 – 1923.en_US
dc.identifier.citedreferenceJones, B.W., Lopez, J.E., Huttenburg, J., Nishiguchi, M.K., 2006. Population structure between environmentally transmitted vibrios and bobtail squids using nested clade analysis. Mol. Ecol. 15, 4317 – 4329.en_US
dc.identifier.citedreferenceJones, B.W., Nishiguchi, M.K., 2004. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144, 1151 – 1155.en_US
dc.identifier.citedreferenceKaeding, A.J., Ast, J.C., Pearce, M.M., Urbanczyk, H., Kimura, S., Endo, H., Nakamura, M., Dunlap, P.V., 2007. Phylogenetic specificity and diversity in the bioluminescent symbioses of Photobacterium mandapamensis. Appl. Environ. Microbiol. 73, 3173 – 3182.en_US
dc.identifier.citedreferenceKimura, S., Dunlap, P.V., Peristiwady, T., Lavilla-Pitogo, C.R., 2003. The Leiognathus aureus complex (Perciformes: Leiognathidae), with the description of a new species. Ichthyol. Res. 50, 221 – 232.en_US
dc.identifier.citedreferenceLo, N., Bandi, C., Watanabe, H., Nalepa, C., Beninati, C., 2003. Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. Mol. Biol. Evol. 20, 907 – 913.en_US
dc.identifier.citedreferenceMaddison, D.R., Maddison, W.P., 2005. Macclade4: Analysis of Phylogeny and Character Evolution, Version 4.08. Sinauer Associates, Sunderland, MA.en_US
dc.identifier.citedreferenceMcFall-Ngai, M.J., 1991. Luminous bacterial symbiosis in fish evolution: adaptive radiation among the leiognathid fishes. In: L. Margulis, R. Fester (Eds.), Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis, 2nd edn. MIT Press, Cambridge, MA, pp. 381 – 409.en_US
dc.identifier.citedreferenceMcFall-Ngai, M.J., Dunlap, P.V., 1983. Three new modes of luminescence in the leiognathid fish Gazza minuta: discrete projected luminescence, ventral body flash, and buccal luminescence. Mar. Biol. 73, 227 – 237.en_US
dc.identifier.citedreferenceMcFall-Ngai, M.J., Morin, J.G., 1991. Camouflage by disruptive illumination in leiognathids, a family of shallow-water, bioluminescent fishes. J. Exp. Biol. 156, 119 – 137.en_US
dc.identifier.citedreferenceMcFall-Ngai, M.J., Ruby, E.G., 1991. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science, 254, 1491 – 1494.en_US
dc.identifier.citedreferenceMiya, M., Kawaguchi, A., Nishida, M., 2001. Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol. Biol. Evol. 18, 1993 – 2009.en_US
dc.identifier.citedreferenceMiya, M., Takeshima, H., Endo, H., Ishiguro, N.B., Inoue, J.G., Mukai, T., Satoh, T.P., Yamaguchi, M., Kawaguchi, A., Mabuchi, K., Shirai, S.M., Nishida, M., 2003. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol. Phylogenet. Evol. 26, 121 – 138.en_US
dc.identifier.citedreferenceMorin, J.G., Harrington, A., Nealson, K., Krieger, N., Baldwin, T.O., Hastings, J.W., 1975. Light for all reasons: versatility in the behavioral repertoire of the flashlight fish. Science, 190, 74 – 76.en_US
dc.identifier.citedreferenceNakabo, T. (Ed.), 2002. Fishes of Japan with Pictoral Keys to the Species. Tokai University Press, Tokyo, Japan.en_US
dc.identifier.citedreferenceNealson, K.H., 1978. Isolation, identification and manipulation of luminous bacteria. Methods Enzymol. 57, 153 – 166.en_US
dc.identifier.citedreferenceNealson, K.H., 1979. Alternative strategies of symbiosis of marine luminous fishes harboring light-emitting bacteria. Trends Biochem. Sci. 4, 105 – 110.en_US
dc.identifier.citedreferenceNealson, K., Cohn, D., Leisman, G., Tebo, B., 1981. Coevolution of luminous bacteria and their eukaryotic hosts. Ann. New York Acad. Sci. 361, 76 – 91.en_US
dc.identifier.citedreferenceNealson, K.H., Haygood, M.G., Tebo, B.M., Roman, M., Miller, E., McCosker, J.E., 1984. Contribution of symbiotically luminous fishes to the occurrence and bioluminescence of luminous bacteria in seawater. Microb. Ecol. 10, 69 – 77.en_US
dc.identifier.citedreferenceNelson, J.S., 2006. Fishes of the World, 4th edn. John Wiley and Sons, New York.en_US
dc.identifier.citedreferenceNishiguchi, M., 2000. Temperature affects species distribution in symbiotic populations of Vibrio spp. Appl. Environ. Microbiol. 66, 3550 – 3555.en_US
dc.identifier.citedreferenceNishiguchi, M.K., Lopez, J.E., von Boletzky, S., 2004. Enlightenment of old ideas from new investigations: the evolution of bacteriogenic light organs in squids. Evol. Dev. 6, 41 – 49.en_US
dc.identifier.citedreferenceNishiguchi, M., Nair, V.S., 2003. Evolution of symbiosis in the Vibrionaceae: a combined approach using molecules and physiology. Int. J. System. Evol. Microbiol. 53, 2019 – 2026.en_US
dc.identifier.citedreferenceNishiguchi, M., Ruby, E.G., McFall-Ngai, M.J., 1998. Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel cladogenesis in sepiolid squid- Vibrio symbioses. Appl. Environ. Microbiol. 64, 3209 – 3213.en_US
dc.identifier.citedreferencePage, R.D.M., 1994. Parallel phylogenies: reconstructing the history of host-parasite assemblages. Cladistics 10, 155 – 173.en_US
dc.identifier.citedreferencePage, R.D.M., Charleston, M.A., 1998. Trees within trees: phylogeny and historical associations. Trends Ecol. Evol. 13, 356 – 359.en_US
dc.identifier.citedreferencePeek, A.S., Feldman, R.A., Lutz, R.A., Vrijenhoek, R.C., 1998. Cospeciation of bacteria and deep sea clams. Proc. Natl Acad. Sci. USA. 95, 9962 – 9966.en_US
dc.identifier.citedreferenceReichelt, J.L., Nealson, K., Hastings, J.W., 1977. The specificity of symbiosis: Ponyfish and luminous bacteria. Arch. Microbiol. 112, 157 – 161.en_US
dc.identifier.citedreferenceRuby, E.G., Asato, L.M., 1993. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159, 160 – 167.en_US
dc.identifier.citedreferenceRuby, E.G., Morin, J.G., 1978. Specificity of symbiosis between deep-sea fish and psychrotrophic luminous bacteria. Deep-Sea Res. 25, 161 – 171.en_US
dc.identifier.citedreferenceSaffo, M.B., 2002. Themes from variation: probing the commonalities of symbiotic associations. Integr. Comp. Biol. 42, 291 – 294.en_US
dc.identifier.citedreferenceSasaki, A., Ikejima, K., Aoki, S., Azuma, N., Kashimura, N., Wada, M., 2003. Field evidence for bioluminescent signaling in the pony fish, Leiognathus elongatus. Environ. Biol. Fishes, 66, 307 – 311.en_US
dc.identifier.citedreferenceShimizu, T., 1997. Beryciformes. In: O. Okamura, K. Amaoka (Eds.), Sea Fishes of Japan. Yama-Kei Publishers Co., Ltd, Tokyo, pp. 156 – 167.en_US
dc.identifier.citedreferenceSparks, J.S., Dunlap, P.V., Smith, W.L., 2005. Evolution and diversification of a sexually dimorphic luminescent system in ponyfishes (Teleostei: Leiognathidae), including diagnoses for two new genera. Cladistics 21, 305 – 327.en_US
dc.identifier.citedreferenceSwofford, D.L., 2002. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0B10. Sinauer Associates, Sunderland, MA.en_US
dc.identifier.citedreferenceThompson, J.N., 2005. The Geographic Mosaic of Coevolution. University of Chicago Press, Chicago, IL.en_US
dc.identifier.citedreferenceVydryakova, G.A., Kuznetsov, A.M., Primakova, G.A., Chugaeva, Y.V., Fish, A.M., 1995. Luminescent bacterial symbionts and commensals of luminescent and nonluminescent animals of the Indian Ocean. Mikrobiologiya 64, 589 – 592.en_US
dc.identifier.citedreferenceWada, M., Azuma, N., Mizuno, N., Kurokura, H., 1999. Transfer of symbiotic luminous bacteria from parental Leiognathus nuchalis to offspring. Mar. Biol. 135, 683 – 687.en_US
dc.identifier.citedreferenceWada, M., Kamiya, A., Uchiyama, N., Yoshizawa, S., Kita-Tsukamoto, K., Ikejima, K., Yu, R., Imada, C., Karatani, H., Mizuno, N., Suzuki, Y., Nishida, M., Kogure, K., 2006. Lux A gene of light organ symbionts of the bioluminescent fish Acropoma japonicum (Acropomatidae) and Siphamia versicolor (Apogonidae) forms a lineage closely related to that of Photobacterium leiognathi ssp. mandapamensis. FEMS Microbiol. Lett. 260, 186 – 192.en_US
dc.identifier.citedreferenceWei, S.L., Young, R.E., 1989. Development of symbiotic bacterial bioluminescence in a nearshore cephalopod, Euyprmna scolopes. Mar. Biol. 103, 541 – 546.en_US
dc.identifier.citedreferenceWheeler, W., Gladstein, D., De Laet, J., 2003. POY, Phylogeny Reconstruction Via Optimization of DNA and Other Data, Version 3.0.11 ( American Museum of Natural History, New York), available by anonymous ftp from ftp://ftp.amnh.org/pub/people/wheeler/poy/version3-current/poy.3.0.11.pdf.en_US
dc.identifier.citedreferenceWolfe, C.J., Haygood, M.G., 1991. Restriction fragment length polymorphism analysis reveals high levels of genetic divergence among the light organ symbionts of flashlight fish. Biol. Bull. 181, 135 – 143.en_US
dc.identifier.citedreferenceWoodland, D.J., Cabanban, A.S., Taylor, V.M., Taylor, R.J., 2002. A synchronized rhythmic flashing light display by schooling Leiognathus splendens (Leiognathidae: Perciformes). Mar. Freshwater Res. 53, 159 – 162.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.