Show simple item record

Reconstruction and display of curvilinear objects from optical section data using 3-D curve fitting algorithms

dc.contributor.authorShelden,en_US
dc.contributor.authorKnecht,en_US
dc.date.accessioned2010-06-01T20:52:46Z
dc.date.available2010-06-01T20:52:46Z
dc.date.issued1998-07en_US
dc.identifier.citationShelden, ; Knecht, (1998). "Reconstruction and display of curvilinear objects from optical section data using 3-D curve fitting algorithms." Journal of Microscopy 191(1): 97-107. <http://hdl.handle.net/2027.42/73976>en_US
dc.identifier.issn0022-2720en_US
dc.identifier.issn1365-2818en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73976
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=9723192&dopt=citationen_US
dc.format.extent730440 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rightsThe Royal Microscopical Societyen_US
dc.subject.other3-D Reconstructionen_US
dc.subject.otherConfocal Microscopyen_US
dc.subject.otherCytoskeletonen_US
dc.subject.otherMicrotubulesen_US
dc.titleReconstruction and display of curvilinear objects from optical section data using 3-D curve fitting algorithmsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor, MI 48109-0616, U.S.A.,en_US
dc.contributor.affiliationotherDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, U.S.A.en_US
dc.identifier.pmid9723192en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73976/1/j.1365-2818.1998.00352.x.pdf
dc.identifier.doi10.1046/j.1365-2818.1998.00352.xen_US
dc.identifier.sourceJournal of Microscopyen_US
dc.identifier.citedreferenceAgard, D.A., Hiraoka, Y., Shaw, P., Sedat, J.W. ( 1989 ) Fluorescence microscopy in three dimensions. Meth. Cell Biol. 30, 353 377.en_US
dc.identifier.citedreferenceBarillot, C., Gibaud, B., Scarabin, J., Coatrieux, J. ( 1985 ) 3D reconstruction of cerebral blood vessels. IEEE Comput. Graphics Applications, 5 ( 12 ), 13 19.en_US
dc.identifier.citedreferenceBrakenhoff, G.J., Blom, P., Barends, P. ( 1979 ) Confocal scanning light microscopy with high aperture immersion lenses. J. Microsc. 117, 219 232.en_US
dc.identifier.citedreferenceBrakenhoff, G.J., Visscher, K., Van der Voort, H.T.M. ( 1989 ) Size and shape of the confocal spot: Control and relation to 3-D imaging and image processing. The Handbook of Biological Confocal Microscopy (ed. by J. Pawley). IMR Press, Madison WI.en_US
dc.identifier.citedreferenceBrown, R.A., Talas, G., Porter, R.A., McGrouther, D.A., Eastwood, M. ( 1996 ) Balanced mechanical forces and microtubule contribution to fibroblast contraction. J. Cell Physiol. 169, 439 447.en_US
dc.identifier.citedreferenceCarrington, W.A., Lynch, R.M., Moore, E.D., Isenberg, G., Fogarty, K.E., Fay, F.S. ( 1995 ) Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. Science, 268, 1483 1487.en_US
dc.identifier.citedreferenceCassimeris, L., Pryer, N.K., Salmon, E.D. ( 1988 ) Real-time observations of microtubule dynamic instability in living cells. J. Cell Biol. 107, 2223 2231.en_US
dc.identifier.citedreferenceChasen, S.H. ( 1975 ) Geometric Principles and Procedures for Computer Graphics Applications. Prentice-Hall, Englewood Cliffs, NJ.en_US
dc.identifier.citedreferenceCohen, A.R., Roysam, B., Turner, J.N. ( 1994 ) Automated tracing and volume measurements of neurons from 3-D confocal fluorescence microscopy data. J. Microsc. 173, 103 114.en_US
dc.identifier.citedreferenceCox, G. & Sheppard, C. ( 1993 ) Effects of image deconvolution on optical sectioning in conventional and confocal microscopes. Bioimaging, 1, 82 95.en_US
dc.identifier.citedreferenceDing, R.K., McDonald, L., McIntosh, J.R. ( 1993 ) Three-dimensional reconstruction and analysis of mitotic spindles from the yeast Schizosaccharomyces pombe. J. Cell Biol. 120, 141 151.en_US
dc.identifier.citedreferenceFoley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F. ( 1990 ) Computer Graphics Principles and Practice, 2 edn. Systems Programming Series, pp. 471 531. Addison-Wesley, New York.en_US
dc.identifier.citedreferenceFrieder, G., Gordon, D., Reynolds, R. ( 1985 ) Back-to-front display of voxel-based objects. IEEE Comput. Graphics Image Processing, 5, 52 60.en_US
dc.identifier.citedreferenceFuji, S., Tsukamoto, Y., Kaneda, Y., Fuji, M., Akeno, K., Matsuo, M., Yamasaki, K., Ayers, C. ( 1986 ) Three dimensional modeling of cerebral arteries from cineangiograms. Proc. 8th Annual Conference of the IEEE Engineering in Medicine and Biology Society, New York, pp. 109 111.en_US
dc.identifier.citedreferenceGuilak, F. ( 1994 ) Volume and surface area measurement of viable chondrocytes in situ using geometric modeling of serial confocal data. J. Microsc. 173, 245 256.en_US
dc.identifier.citedreferenceIngber, D.E. ( 1993 ) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J. Cell Sci. 104, 613 627.en_US
dc.identifier.citedreferenceJacobs, J.R. & Stevens, J.K. ( 1986 ) Experimental modification of PC12 neurite shape with the microtubule-depolymerizing drug nocodazole: a serial electron microscope study of neurite shape control. J. Cell Biol. 103 ( 3 ): 907 915.en_US
dc.identifier.citedreferenceKajiya, J. & Von Herzen, B. ( 1984 ) Ray tracing volume densities. Comput. Graphics, 18, 165 174.en_US
dc.identifier.citedreferenceKurachi, M., Hoshi, M., Tashiro, H. ( 1995 ) Buckling of a single microtubule by optical trapping forces: direct measurment of microtubule rigidity. Cell Motil. Cytoskel. 30, 221 228.en_US
dc.identifier.citedreferenceLorensen, W.E. & Cline, H.E. ( 1987 ) ‘Marching Cubes’: A high resolution 3D surface construction algorithm. Comput. Graphics, 21, 163 169.en_US
dc.identifier.citedreferenceMathog, D. ( 1985 ) Light microscope based analysis of three-dimensional structure: application to the study of Drosophila salivary gland nuclei. II. Algorithms for model analysis. J. Microsc. 137, 253 273.en_US
dc.identifier.citedreferenceMcNally, J. ( 1995 ) 3D analysis of cell movement during normal and myosin II null cell morphogenesis in Dictyostelium. Dev. Biol. 167, 118 129.en_US
dc.identifier.citedreferencePawley, J. ( 1989 ) Fundamental limits in confocal microscopy. Handbook of Biological Confocal Microscopy. IMR Press, Madison WI.en_US
dc.identifier.citedreferenceSammak, P.J. & Borisy, G.G. ( 1988 ) Detection of single fluorescent microtubules and methods for determining their dynamics in living cells. Cell Motil. Cytoskel. 10, 237 245.en_US
dc.identifier.citedreferenceSchulze, E. & Kirschner, M. ( 1987 ) Dynamic and stable populations of microtubules in cells. J. Cell Biol. 104, 277 288.en_US
dc.identifier.citedreferenceShaw, P.J. ( 1993 ) Computer reconstruction in three-dimensional fluorescence microscopy. Electronic Light Microscopy, pp. 211 230. Wiley-Liss, Inc., New York.en_US
dc.identifier.citedreferenceShaw, P.J. & Rawlins, D.J. ( 1991 ) The point-spread function of a confocal microscope; its measurement and use in deconvolution of 3-D data. J. Microsc. 163, 151 165.en_US
dc.identifier.citedreferenceShelden, E. & Knecht, D.A. ( 1995 ) Mutants lacking myosin II cannot resist forces generated during multicellular development. J. Cell Sci. 108, 1105 1115.en_US
dc.identifier.citedreferenceShelden, E. & Wadsworth, P. ( 1993 ) Observation and quantification of individual microtubule behavior in vivo: microtubule dynamics are cell-type specific. J. Cell Biol. 120, 935 945.en_US
dc.identifier.citedreferenceSoll, D.R. ( 1988 ) ‘DMS,’ a computer-assisted system for quantitating motility, the dynamics of cytoplasmic flow, and pseudopod formation: its application to Dictyostelium chemotaxis. Cell Motil. Cytoskel. 10, 91 106.en_US
dc.identifier.citedreferenceTanaka, E.M. & Kirschner, M.W. ( 1991 ) Microtubule behavior in the growth cones of living neurons during axon elongation. J. Cell Biol. 115, 345 363.en_US
dc.identifier.citedreferenceTaylor, D.L. & Salmon, E.D. ( 1989 ) Basic fluorescence microscopy. Methods Cell Biol. 29, 207 237.en_US
dc.identifier.citedreferenceWalker, R.A., O'Brien, E.T., Pryer, N.K., Soboeiro, M.F., Voter, W.A., Erickson, H.P., Salmon, E.D. ( 1988 ) Dynamic instability of individual microtubules analyzed by video light microscopy. J. Cell Biol. 107, 1437 1448.en_US
dc.identifier.citedreferenceWilson, T. ( 1990 ) The role of the pinhole in confocal imaging systems. Handbook of Biological Confocal Microscopy, 2nd edn (ed. by J. B. Pawley), pp. 113 126. Plenum Press, New York.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.