Show simple item record

Exposure to an enriched CO 2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem

dc.contributor.authorSchäfer, Karina V. R.en_US
dc.contributor.authorOren, Ramen_US
dc.contributor.authorEllsworth, David S.en_US
dc.contributor.authorLai, Chun-Taen_US
dc.contributor.authorHerrick, Jeffrey D.en_US
dc.contributor.authorFinzi, Adrien C.en_US
dc.contributor.authorRichter, Daniel D.en_US
dc.contributor.authorKatul, Gabriel G.en_US
dc.date.accessioned2010-06-01T20:53:09Z
dc.date.available2010-06-01T20:53:09Z
dc.date.issued2003-10en_US
dc.identifier.citationSchÄfer, Karina V . R.; Oren, Ram; Ellsworth, David S.; Lai, Chun-Ta; Herrick, Jeffrey D.; Finzi, Adrien C.; Richter, Daniel D.; Katul, Gabriel G. (2003). "Exposure to an enriched CO 2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem." Global Change Biology 9(10): 1378-1400. <http://hdl.handle.net/2027.42/73982>en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73982
dc.description.abstractWe linked a leaf-level CO 2 assimilation model with a model that accounts for light attenuation in the canopy and measurements of sap-flux-based canopy conductance into a new canopy conductance-constrained carbon assimilation (4C-A) model. We estimated canopy CO 2 uptake ( A nC ) at the Duke Forest free-air CO 2 enrichment (FACE) study. Rates of A nC estimated from the 4C-A model agreed well with leaf gas exchange measurements ( A net ) in both CO 2 treatments. Under ambient conditions, monthly sums of net CO 2 uptake by the canopy ( A nC ) were 13% higher than estimates based on eddy-covariance and chamber measurements. Annual estimates of A nC were only 3% higher than carbon (C) accumulations and losses estimated from ground-based measurements for the entire stand. The C budget for the Pinus taeda component was well constrained (within 1% of ground-based measurements). Although the closure of the C budget for the broadleaf species was poorer (within 20%), these species are a minor component of the forest. Under elevated CO 2 , the C used annually for growth, turnover, and respiration balanced only 80% of the A nC . Of the extra 700 g C m −2  a −1 (1999 and 2000 average), 86% is attributable to surface soil CO 2 efflux. This suggests that the production and turnover of fine roots was underestimated or that mycorrhizae and rhizodeposition became an increasingly important component of the C balance. Under elevated CO 2 , net ecosystem production increased by 272 g C m −2  a −1 : 44% greater than under ambient CO 2 . The majority (87%) of this C was sequestered in a moderately long-term C pool in wood, with the remainder in the forest floor–soil subsystem.en_US
dc.format.extent1036562 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© 2003 Blackwell Publishing Ltden_US
dc.subject.otherCanopy Stomatal Conductanceen_US
dc.subject.otherFree Air CO 2 Enrichmenten_US
dc.subject.otherNet Ecosystem Exchangeen_US
dc.subject.otherNet Primary Productivityen_US
dc.subject.otherPlant Canopy Modellingen_US
dc.subject.otherRespirationen_US
dc.titleExposure to an enriched CO 2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystemen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† School of Natural Resources and Environment, University of Michigan, 430 E. University Ave., Ann Arbor, MI 48109, USA ,en_US
dc.contributor.affiliationotherNicholas School of the Environment and Earth Sciences, Box 90328, Durham, NC 27708, USA ,en_US
dc.contributor.affiliationother† Department of Biology, University of Utah, Salt Lake City, UT 84112, USA ,en_US
dc.contributor.affiliationother§ West Virginia University, Morgantown, WV 26506, USA ,en_US
dc.contributor.affiliationother¶ Department of Biology, Boston University, 5 Cunningham St., Boston, MA 02215, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73982/1/j.1365-2486.2003.00662.x.pdf
dc.identifier.doi10.1046/j.1365-2486.2003.00662.xen_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceKÖstner BMM, Schulze E-D, Kelliher FM et al. ( 1992 ) Transpiration and canopy conductance in a pristine broad leafed forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements. Oecologia, 91, 350 – 359.en_US
dc.identifier.citedreferenceLai C-T, Katul GG, Butnor J, Ellsworth D, Oren R ( 2002 ) Modelling night-time ecosystem respiration by a constrained source optimization method. Global Change Biology, 8, 124 – 141.en_US
dc.identifier.citedreferenceLai C-T, Katul GG, Oren R, Ellsworth DS, SchÄfer KVR ( 2000 ) Modeling CO 2 and water vapor turbulent flux distributions within a forest canopy. Journal of Geophysical Research, 105, 26333 – 26351.en_US
dc.identifier.citedreferenceLandsberg J, Waring R ( 1997 ) A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95, 209 – 228.en_US
dc.identifier.citedreferenceLaw BE, Ryan MG, Anthoni PM ( 1999 ) Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biology, 5, 169 – 182.en_US
dc.identifier.citedreferenceLaw BE, Waring RH, Anthoni PM, Aber JD ( 2000 ) Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models. Global Change Biology, 6, 155 – 168.en_US
dc.identifier.citedreferenceLeuning R ( 1995 ) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell and Environment, 18, 339 – 355.en_US
dc.identifier.citedreferenceLeuning R, Dunin FX, Wang Y-P ( 1998 ) A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. II. Comparison with measurements. Agricultural and Forest Meteorology, 91, 113 – 125.en_US
dc.identifier.citedreferenceLuo Y, Chen JL, Reynolds JF, Field CB, Mooney HA ( 1997 ) Disproportional increase in photosynthesis and plant biomass in a Californian grassland exposed to elevated CO 2: a simulations analysis. Functional Ecology, 11, 696 – 704.en_US
dc.identifier.citedreferenceLuo Y, Medlyn B, Hui D, Ellsworth D, Reynolds J, Katul G ( 2001 ) Gross primary productivity in Duke forest: modelling synthesis of CO 2 experiment and eddy-flux data. Ecological Applications, 11, 239 – 252.en_US
dc.identifier.citedreferenceMaier CA ( 2001 ) Stem growth and respiration in loblolly pine plantation differing in resource variability. Tree Physiology, 21, 1183 – 1193.en_US
dc.identifier.citedreferenceMaier CA, Kress LW ( 2000 ) Soil CO 2 evolution and root respiration in 11 year-old loblolly pine ( Pinus taeda ) plantations as affected by soil moisture and nutrient availability. Canadian Journal of Forest Research, 30, 347 – 359.en_US
dc.identifier.citedreferenceMaier CA, Zarnoch SJ, Dougherty PM ( 1998 ) Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine ( Pinus taeda ) plantation. Tree Physiology, 18, 11 – 20.en_US
dc.identifier.citedreferenceMÄkaelÄ A, Valentine HT ( 2001 ) The ratio of NPP  :   GPP: evidence of change over the course of stand development. Tree Physiology, 21, 1015 – 1030.en_US
dc.identifier.citedreferenceMatamala R, Schlesinger WH ( 2000 ) Effects of elevated CO 2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biology, 6, 967 – 980.en_US
dc.identifier.citedreferenceMatyssek R, Schuize E-D ( 1988 ) Carbon uptake and respiration in above ground parts of Larix decidua X leptopsis tree. Trees, 2, 233 – 241.en_US
dc.identifier.citedreferenceMcDowell NG, Marshall JD, Qi J, Mattson K ( 1999 ) Direct inhibition of maintenance respiration in western hemlock roots exposed to ambient and soil carbon dioxide concentrations. Tree Physiology, 19, 599 – 605.en_US
dc.identifier.citedreferenceMerbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schuize J ( 1999 ) Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. Journal of Plant Nutrition and Soil Science – Zeitschrift fur Pflanzenerna'hrung und Bodenkunde, 162, 373 – 383.en_US
dc.identifier.citedreferenceMonteith JL ( 1977 ) Climate and the efficiency of crop production in Britain. Philsophical Transactions of the Royal Society of London Series B, 281, 277 – 294.en_US
dc.identifier.citedreferenceNaidu SL, DeLucia EH, Thomas RB ( 1998 ) Contrasting pattern of biomass allocation in dominant and suppressed loblolly pine. Canadian Journal of Forest Research, 28, 1116 – 1124.en_US
dc.identifier.citedreferenceNaumburg ES, Ellsworth DS ( 2000 ) Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO 2 in FACE. Oecologia, 122, 163 – 174.en_US
dc.identifier.citedreferenceNorby RJ, Gunderson CA, Wullschleger SD, O'Neill EG, McCracken MK ( 1992 ) Productivity and compensatory response of yellow popular trees in elevated CO 2. Nature, 357, 322 – 324.en_US
dc.identifier.citedreferenceNorby RJ, Todd DE, Fults J, Johnson DW ( 2001 ) Allometric determination of tree growth in CO 2 enriched sweetgum stand. New Phytologist, 150, 477 – 487.en_US
dc.identifier.citedreferenceNorman JM ( 1982 ) Simulation of microclimates. In: Biometeorology and Integrated Pest Management ( eds Hatfield JL, Thompson I ), pp. 65 – 99. Academic Press, New York.en_US
dc.identifier.citedreferenceOren R, Zimmermann R ( 1989 ) CO 2 assimilation and the carbon balance of healthy and declining Norway spruce stands. In: Forest Decline and Air Pollution: a Study of Spruce (Picea abies (L.) Karst.) on acid soils. Ecological Studies Series, Vol. 77 ( eds Schulze E-D, Lange OL, Oren R ), pp. 352 – 369. Springer Verlag, Berlin.en_US
dc.identifier.citedreferenceOren R, Ellsworth DS, Johnson KH et al. ( 2001 ) Soil fertility limits carbon sequestration by forest ecosystems in a CO 2 -enriched atmosphere. Nature, 411, 469 – 472.en_US
dc.identifier.citedreferenceOren R, Pataki D ( 2001 ) Transpiration in response to variation in microclimate and soil moisture in southeastern decidous forests. Oecologia, 127, 549 – 559.en_US
dc.identifier.citedreferencePataki D, Oren R, Tissue D ( 1998 ) Elevated carbon dioxide does not affect average canopy stomatal conductance of Pinus taeda L. Oecologia, 117, 47 – 52.en_US
dc.identifier.citedreferencePhillips N, Oren R ( 2001 ) Inter-and intra-specific variations in transpiration in a pine forest. Ecological Applications, 11, 385 – 396.en_US
dc.identifier.citedreferencePhillips NG, Nagchaudhuri A, Oren R, KatuI G ( 1997 ) Time constant for water uptake in loblolly pine estimated from time-series of stem sap-flow and evaporative demand. Trees, 11, 412 – 419.en_US
dc.identifier.citedreferenceRaich JW, Schlesinger WH ( 1992 ) The global carbon-dioxide flux in soil respiration and its relationship to climate. Tellus, B44, 81 – 99.en_US
dc.identifier.citedreferenceRey A, Jarvis PG ( 1998 ) Long-term photosynthetic acclimation to increased atmospheric CO 2 concentration in young birch ( Betual pendula ) trees. Tree Physiology, 18, 441 – 450.en_US
dc.identifier.citedreferenceRichter DD, Markewitz D, Trumbore SE, Wells CG ( 1999 ) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature, 400, 56 – 58.en_US
dc.identifier.citedreferenceRogers A, Ellsworth DS ( 2002 ) Photosynthetic acclimation of Pinus taeda (loblolly pine) to long-term growth in elevated p CO 2 (FACE). Plant, Cell and Environment, 25, 851 – 858.en_US
dc.identifier.citedreferenceRyan MG, Under S, Vose J, Hubbard RM ( 1994 ) Dark respiration in pines. In: Environmental Constraints on the Structure and Productivity of Pine Forest Ecosystems: a Comparative Analysis, Ecological Bulletins, 43 ( eds Gholz HL, Linder S, McMurtie RE ), pp. 50 – 63.en_US
dc.identifier.citedreferenceSchÄfer KVR, Oren R, Lai C-T, KatuI GG ( 2002 ) Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO 2 concentration. Global Change Biology, 8, 895 – 911.en_US
dc.identifier.citedreferenceSchÄfer KVR, Phillips N, Oren R (in review). Long-term response to CO 2 -enriched atmosphere observed in the canopy stomatal conductance of four tree species under naturally varying environment.en_US
dc.identifier.citedreferenceSchimel DS, House JI, Hibbard KA et al. ( 2001 ) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169 – 172.en_US
dc.identifier.citedreferenceSchlesinger WH, Lichter J ( 2001 ) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO 2. Nature, 411, 466 – 469.en_US
dc.identifier.citedreferenceSchulze E-D, Fuchs MI, Fuchs M ( 1977 ) Spatial distribution of photosynthetic capacity and performance in a mountain spruce forest of northern Germany I. Biomass distribution and daily CO 2 uptake in different crown layers. Oecologia, 29, 43 – 61.en_US
dc.identifier.citedreferenceSteffen W, Noble I, Canadell J, Apps M, Schulze E-D, Jarvis PG ( 1998 ) The terrestrial carbon cycle: implications for the Kyoto Protocol. Science, 280, 1393 – 1394.en_US
dc.identifier.citedreferenceStenberg P ( 1998 ) Implications of shoot structure on the rate of photosynthesis at different levels in a coniferous canopy using a model incorporating grouping and penumbra. Functional Ecology, 12, 82 – 91.en_US
dc.identifier.citedreferenceTissue DT, Griffin KL, Turnbull MH, Whitehead D ( 2001 ) Canopy position and needle age affect photosynthetic response in field-grown Pinus radiata after five years of exposure to elevated carbon dioxide partial pressure. Tree Physiology, 21, 915 – 923.en_US
dc.identifier.citedreferenceValentini R, Matteucci G, Dolman AJ et al. ( 2001 ) Respiration as the main determinant of carbon balance in European Forests. Nature, 404, 861 – 865.en_US
dc.identifier.citedreferenceWang Y-P, Leuning R ( 1998 ) A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: model description and comparison with a multi-layered model. Agricultural and Forest Meteorology, 91, 89 – 111.en_US
dc.identifier.citedreferenceWilson KB, Baldocchi DD, Hanson PJ ( 2000 ) Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiology, 20, 565 – 578.en_US
dc.identifier.citedreferenceWofsy SC, Goulden ML, Munger JW et al. ( 1993 ) Net exchange of CO 2 in a mid-latitude forest. Science, 260, 409 – 425.en_US
dc.identifier.citedreferenceWullschleger SD, Norby RJ, Love JC, Runck C ( 1997 ) Energetic costs of tissue construction in yellow-poplar and white oak trees exposed to long-term CO 2 enrichment. Annals of Botany, 80, 289 – 297.en_US
dc.identifier.citedreferenceZak DR, Pregitzer KS, King JS, Holmes WE ( 2000 ) Elevated atmospheric CO 2, fine roots and the response of soil micro organisms: a review and a hypothesis. New Phytologist, 147, 201 – 222.en_US
dc.identifier.citedreferenceFinzi AC, Alien AS, DeLucia EH, Ellsworth DS, Schlesinger WH ( 2001 ) Forest litter production, chemistry and decomposition following two years of free-air CO 2 enrichment. Ecology, 82, 470 – 484.en_US
dc.identifier.citedreferenceFinzi AC, DeLucia EH, Hamilton JG, Richter DD, Schlesinger WH ( 2002 ) The nitrogen budget of a pine forest under elevated CO 2 enrichment. Oecologia, 132, 567 – 578.en_US
dc.identifier.citedreferenceFriend AD ( 2001 ) Modelling canopy CO 2 fluxe: are ‘big-leaf’ simplifications justified? Global Ecology & Biography, 10, 603 – 619.en_US
dc.identifier.citedreferenceGranier A ( 1987 ) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309 – 320.en_US
dc.identifier.citedreferenceGranier A, Ceschia E, Damesin C et al. ( 2000 ) The carbon balance of a young Beech forest. Functional Ecology, 14, 312 – 325.en_US
dc.identifier.citedreferenceGriffin KL, Thomas RB, Strain BR ( 1993 ) Effects of nitrogen supply and elevated carbon dioxide on construction cost in leaves of Pinus taeda L. seedlings. Oecologia, 95, 575 – 580.en_US
dc.identifier.citedreferenceGriffin KL, Tissue DT, Turnbull MH, Whitehead D ( 2001 ) The onset of photosynthetic acclimation to elevated CO 2 partial pressure in field-grown Pinus radiata D.Don after 4 years. Plant, Cell and Environment, 23, 1089 – 1098.en_US
dc.identifier.citedreferenceGriffin KL, Winner WE, Strain BR ( 1996 ) Construction cost of loblolly and ponderosa pine leaves grown with varying carbon and nitrogen availability. Plant, Cell and Environment, 19, 729 – 738.en_US
dc.identifier.citedreferenceHamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC, Schlesinger WH ( 2002 ) Forest carbon balance under elevated CO 2. Oecologia, 131, 250 – 260.en_US
dc.identifier.citedreferenceHamilton JG, Thomas RB, DeLucia EH ( 2001 ) Direct and indirect effects of elevated CO 2 on leaf respiration in a forest ecosystem. Plant, Cell and Environment, 24, 975 – 982.en_US
dc.identifier.citedreferenceHendrey GR, Ellsworth DS, Lewin KF, Nagy J ( 1999 ) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO 2. Global Change Biology, 5, 293 – 309.en_US
dc.identifier.citedreferenceHerrick J, Thomas RB ( 1999 ) Effects of CO 2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum trees ( Liquidambar styraciflua ) in a forest ecosystem. Tree Physiology, 19, 779 – 786.en_US
dc.identifier.citedreferenceHerrick J, Thomas RB ( 2001 ) No photosynthetic down-regulation in sweetgum trees ( Liquidambar styraciflua L.) after three years of CO 2 enrichment at the Duke Forest FACE experiment. Plant, Cell and Environment, 24, 53 – 64.en_US
dc.identifier.citedreferenceHoughton JT ( 1997 ) Global Warming. The Complete Briefing. Cambridge University Press, Cambridge pp. 251.en_US
dc.identifier.citedreferenceJach ME, Ceulemans R ( 2000 ) Effects of season, needle age and elevated atmospheric CO 2 on photosynthesis in Scots pine ( Pinus sylvestris ). Tree Physiology, 20, 145 – 157.en_US
dc.identifier.citedreferenceJarvis PG, Miranda HS, Muetzenfeld RI ( 1985 ) Modelling canopy exchange of water vapor and carbon dioxide in coniferous forest plantations. In: The Forest-Atmosphere Interaction ( eds Hutchison BA & Hicks BB ), pp. 521 – 542. D. Reidal Publishing Company, Dordrecht, The Netherlands.en_US
dc.identifier.citedreferenceJohnson D, Geisinger D, Walker R, Newman J, Vose J, Elliot K, Ball T ( 1994 ) Soil pCO 2, soil respiration, and root activity in CO 2 -fumigated and nitrogen fertilized ponderosa pine. Plant and Soil, 165, 129 – 138.en_US
dc.identifier.citedreferenceKatul G, Hsieh CI, Bowling D et al. ( 1999 ) Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest. Boundary Layer Meteorology, 93, 1 – 28.en_US
dc.identifier.citedreferenceKatul GG, Ellsworth DS, Lai C-T ( 2000 ) Modelling assimilation and intercellular CO 2 from measured conductance: a synthesis of approaches. Plant, Cell and Environment, 23, 1313 – 1328.en_US
dc.identifier.citedreferenceKinerson RS, Higginbotham KO, Chapman RC ( 1974 ) The dynamics of foliage distribution within a forest canopy. Journal of Applied Ecology, 11, 347 – 353.en_US
dc.identifier.citedreferenceKÖrner C ( 1995 ) Towards a better experimental basis for upscaling plant responses to elevated CO 2 and climate warming. Plant, Cell and Environment, 18, 1101 – 1110.en_US
dc.identifier.citedreferenceAndrews JA, Harrison KG, Matamala R, Schlesinger WH ( 1999 ) Separation of root respiration from total soil respiration using carbon-13 labelling during free-air carbon dioxide enrichment (FACE). Soil Sience Society of America Journal, 63, 1429 – 1435.en_US
dc.identifier.citedreferenceArneth A, Kelliher FM, McSeveny, Byers JN ( 1998 ) Assessment of annual carbon exchange in a water stressed Pinus radiata plantation: an analysis based on eddy covariance measurements and an integrated biophysical model. Global Change Biology, 5, 531 – 545.en_US
dc.identifier.citedreferenceBaldocchi D, Valentini R, Running S, Oechel W, Dahlman R ( 1996 ) Strategies for measuring and modelling carbon dioxide and water vapor fluxes over terrestrial ecosystems. Global Change Biology, 2, 159 – 168.en_US
dc.identifier.citedreferenceBaldocchi D, Meyers T ( 1998 ) On using micrometeorological and biophysical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective. Agriculture and Forest Meteorology, 90, 1 – 25.en_US
dc.identifier.citedreferenceButnor JR, Johnsen KH, Oren R, Katul GG ( 2003 ) Reduction of forest floor respiration by fertilization on both carbon dioxide enriched and reference 17-year-old loblolly pine stands. Global Change Biology, 9, 849 – 861.en_US
dc.identifier.citedreferenceCampbell GS, Norman JM ( 1998 ) An introduction to environmental biophysics. 2nd edn. Springer Verlag, New York.en_US
dc.identifier.citedreferenceCarey EV, DeLucia EH, Ball JT ( 1996 ) Stem maintenance and construction respiration in Pinus ponderosa grown in different concentration of atmospheric CO 2. Tree Physiology, 16, 125 – 130.en_US
dc.identifier.citedreferenceClinton BD, Vose JM ( 1999 ) Fine root respiration in mature eastern white pine (Pinus strobus) in situ: the importance of CO 2 controlled environments. Tree Physiology, 19, 475 – 479.en_US
dc.identifier.citedreferenceCollatz GJ, Ball JT, Grivet C, Berry JA ( 1991 ) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54, 107 – 136.en_US
dc.identifier.citedreferenceConstable JVH, Bassirirad H, Lussenhop J, Zerihun A ( 2001 ) Influence of elevated CO 2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua. Tree Physiology, 21, 83 – 91.en_US
dc.identifier.citedreferenceDeLucia E, Hamilton JG, Naidu SL et al. ( 1999 ) Net primary production of a forest ecosystem with experimental CO 2 enrichment. Science, 284, 1177 – 1179.en_US
dc.identifier.citedreferenceDeLucia EH, George K, Hamilton JG ( 2002 ) Radiation-use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide. Tree Physiology, 22, 1003 – 1010.en_US
dc.identifier.citedreferenceDePury DGG, Farquhar GD ( 1997 ) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell and Environment, 20, 537 – 557.en_US
dc.identifier.citedreferenceDuncan WO, Loomis RS, Williams WA, Hanau R ( 1967 ) A model for simulating photosynthesis in plant communities. Hilgardia, 38, 181 – 203.en_US
dc.identifier.citedreferenceEamus D, Jarvis PG ( 1989 ) The direct effect of increase in the global atmospheric CO 2 concentration on natural and commercial trees and forests. Advances in Ecological Research, 19, 1 – 55.en_US
dc.identifier.citedreferenceEllsworth DS ( 1999 ) CO 2 enrichment in a maturing pine fores: are CO 2 exchange and water status in the canopy affected? Plant, Cell and Environment, 22, 461 – 472.en_US
dc.identifier.citedreferenceEllsworth DS ( 2000 ) Seasonal CO 2 assimilation and stomatal limitations in a Pinus taeda canopy with varying climate. Tree Physiology, 20, 435 – 445.en_US
dc.identifier.citedreferenceErbs DG, Klein SA, Duffie JA ( 1982 ) Estimation of the diffuse radiation fraction for hourly, daily and monthly average global radiation. Solar Energy, 28, 293.en_US
dc.identifier.citedreferenceEwers BE, Oren R ( 2000 ) Analysis of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree Physiology, 20, 579 – 589.en_US
dc.identifier.citedreferenceFarquhar GD, von Caemmere S, Berry JA ( 1980 ) A biochemical model of photosynthetic CO 2 assimilation in leaves of C3 species. Planta, 149, 78 – 90.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.