Show simple item record

The Role of Innervation in Induction and Differentiation of Taste Organs: Introduction and Background

dc.contributor.authorMistretta, Charlotte M.en_US
dc.date.accessioned2010-06-01T20:55:07Z
dc.date.available2010-06-01T20:55:07Z
dc.date.issued1998-11en_US
dc.identifier.citationMISTRETTA, CHARLOTTE M. (1998). "The Role of Innervation in Induction and Differentiation of Taste Organs: Introduction and Background." Annals of the New York Academy of Sciences 855(1 OLFACTION AND TASTE XII: AN INTERNATIONAL SYMPOSIUM ): 1-13. <http://hdl.handle.net/2027.42/74014>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74014
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=9929582&dopt=citationen_US
dc.description.abstractTo establish lingual receptive fields that are the basic unit of taste function, ganglion cells must extend neurites to peripheral and central targets and form connections. This symposium concerns developmental interactions between the geniculate, trigeminal and petrosal ganglia and peripheral taste organs, the gustatory papillae and resident taste buds. Investigators present data from organ and tissue culture, from mice with targeted gene deletions and from grafting experiments, in pursuit of principles that direct early innervation of the taste system. The lingual ganglia and the taste papillae initially develop independently, but then become reciprocally dependent as ganglia derive neurotrophin support from gustatory papillae and the papillae require sensory innervation for growth and morphogenesis. The issue of subsequent taste bud induction is discussed with results from amphibian and mammalian models, yielding conclusions that are not yet totally convergent. However, an essential role for sensory innervation in mammalian taste bud differentiation and acquisition of appropriate quantitative relations between ganglion cells and target organs is clearly demonstrated. A working outline is presented for periods of ganglion cell/target organ independence and interdependence during early innervation of the peripheral taste system.en_US
dc.format.extent4865880 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsNew York Academy of Sciences 1998en_US
dc.titleThe Role of Innervation in Induction and Differentiation of Taste Organs: Introduction and Backgrounden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool Dentistry, Room 6228, University of Michigan, Ann Arbor, Michigan 48109-1078, USAen_US
dc.identifier.pmid9929582en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74014/1/j.1749-6632.1998.tb10542.x.pdf
dc.identifier.doi10.1111/j.1749-6632.1998.tb10542.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreference1 Mistretta, C. M. 1991. Developmental neurobiology of the taste system. In Smell and Taste in Health and Disease. T. V. Getchell, R. Doty, L. M. Bartoshuk & J. Snow, Jr., Eds.: 35-64. Raven Press. New York.en_US
dc.identifier.citedreference2 Mistretta, C. M. & D. L. Hill. 1995. Development of the taste system: Basic neurobiology. In Handbook of Olfaction and Gustation. R. L. Doty, Ed.: 635-668. Marcel Dekker. New York.en_US
dc.identifier.citedreferenceDavies, A. M. 1994. The role of neurotrophins in the developing nervous system. J. Neurobiol. 25: 1334 – 1348.en_US
dc.identifier.citedreferenceJones, K. R., I. Farinas, C. Backus & L. F. Reichardt. 1994. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76: 989 – 999.en_US
dc.identifier.citedreferenceSnider, W. D. & D. E. Wright. 1996. Neurotrophins cause a new sensation. Neuron 16: 229 – 232.en_US
dc.identifier.citedreferenceLiu, X., P. Ernfors, H. Wu & R. Jaenisch. 1995. Sensory but not motor deficits in mice lacking NT4 and BDNF. Nature 375: 238 – 241.en_US
dc.identifier.citedreferenceRao, H., Z. Xu, D. K. Maccallum & C. M Mistretta. 1997. BDNF and NGF differ in promoting neurite outgrowth from cultured embryonic rat geniculate and trigeminal ganglia. In Proceedings of the International Symposium on Olfaction and Taste XII and AChemS XIX, San Diego, CA. Chem. Senses 22: 775.en_US
dc.identifier.citedreferenceDavies, A. M. 1997. Neurotrophin switching: Where does it stand? Curr. Opin. Neurobiol. 7: 110 – 118.en_US
dc.identifier.citedreferenceAltman, J. & S. Bayer. 1982. Development of the cranial nerve ganglia and related nuclei in the rat. Adv. Anal. Embryol. Cell Biol. 74: 1 – 90.en_US
dc.identifier.citedreferenceMbiene, J.-P., D. K. Maccalum & C. M. Mistretta. 1997. Organ cultures of embryonic rat tongue support tongue and gustatory papilla morphogenesis in vitro without intact sensory ganglia. J. Comp. Neurol. 377: 324 – 340.en_US
dc.identifier.citedreference11 Mistretta, C. M. 1972. Topographical and histological study of the developing rat tongue, palate and taste buds. In Oral Sensation and Perception: The Mouth of the Infant. J. F. Bosma, Ed.: 163-187. Thomas. Springfield, IL.en_US
dc.identifier.citedreferenceBitgood, M. J. & A. P. Mcmahon. 1995. Hedgehog and BMP genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol. 172: 126 – 138.en_US
dc.identifier.citedreferenceMorasso, M. I., K. A. Mahon & T. D. Sargent. 1995. A Xenopus distal-less gene in transgenic mice: Conserved regulation in distal limb epidermis and other sites of epithelial-mesenchymal interaction. Proc. Natl. Acad. Sci. USA 92: 3968 – 3972.en_US
dc.identifier.citedreferenceHall, J., K. Anderson, J. Hooper & T. E. Finger. 1997. Expression of Sonic hedgehog (Shh) and Patched (Ptc) in developing taste papillae of the mouse. In Proceedings of the International Symposium on Olfaction and Taste XII and AChemS XIX, San Diego, CA. Chem. Senses 22: 692.en_US
dc.identifier.citedreferenceMistretta, C. M. & L. F. Haus. 1996. Temporal and spatial patterns of tenascin and laminin immunoreactivity suggest roles for extracellular matrix in development of gustatory papillae and taste buds. J. Comp. Neurol. 364: 535 – 555.en_US
dc.identifier.citedreferenceMistretta, C. M., K. Goosens, I. Farinas & L. F. Reichardt. 1996. BDNF deletion alters gustatory papilla and taste bud size and number in postnatal mouse. Neurosci. Abstr. 22: 991.en_US
dc.identifier.citedreferenceNosrat, C. A., J. Blomlof, W. M. Elshamy, P. Ernfors & L. Olson. 1997. Lingual deficits in BDNF and NT3 mutant mice leading to gustatory and somatosensory disturbances, respectively. Development 124: 1333 – 1342.en_US
dc.identifier.citedreferenceZhang, C., A. Brandemihl, D. Lau. A. Lawton & B. Oakley. 1997. BDNF is required for the normal development of taste neurons in vivo. NeuroReport 8: 1013 – 1017.en_US
dc.identifier.citedreferenceFarbman, A. I. 1965. Electron micorscope study of the developing taste bud in the rat fungiform papilla. Dev. Biol. 11: 110 – 135.en_US
dc.identifier.citedreference20 Mbiene, J.-P. & C. M. Mistretta. 1998. Initial innervation of embryonic rat tongue and developing taste papillae: Nerves follow precise and spatially restricted pathways. Acta Anat. In press.en_US
dc.identifier.citedreference21 Bradley, R. M. & C. M. Mistretta. 1988. Development of taste. In Handbook of Human Growth and Developmental Biology. Vol. I: Neural, Sensory, Motor and Integrative Development. Part B: Sensory, Motor, and Integrative Development. E. Meisami & P. S. Timiras, Eds.: 63-78. CRC Press. Boca Raton, FL.en_US
dc.identifier.citedreferenceStone, L. S. 1933. Independence of taste organs with respect to their nerve fibers demonstrated in living salamanders. Proc. Soc. Exp. Biol. Med. 30: 1256 – 1257.en_US
dc.identifier.citedreferenceStone, L. S. 1940. The origin and development of taste organs in salamanders observed in the living condition. J. Exp. Zool. 83: 481 – 506.en_US
dc.identifier.citedreferenceBarlow, L. A., C.-B. Chien & R. G. Northcutt. 1996. Embryonic taste buds develop in the absence of innervation. Development 122: 1103 – 1111.en_US
dc.identifier.citedreferenceFritzsch, B., P. A. Sarai, M. Barbacid & I. Silos-Santiago. 1997. Mice with a targeted disruption of the neruotrophin receptor trk B lose their gustatory ganglion cells early but do develop taste buds. Int. J. Dev. Neurosci. 15: 563 – 576.en_US
dc.identifier.citedreferenceBrockes. J. P. 1997. Amphibian limb regeneration: Rebuilding a complex structure. Science 276: 81 – 87.en_US
dc.identifier.citedreferenceBradley, R. M., M. L. Cheal & Y. H. Kim. 1980. Quantitative analysis of developing epiglottal taste buds in sheep, J. Anat. 130: 25 – 32.en_US
dc.identifier.citedreferenceWhite, F. A., I. Silos-Santiago, D. C. Molliver, M. Nishimura, H. Phillips, M. Barbacid & W. D. Snider. 1996, Synchronous onset of NGF and TrkA survival dependence in developing dorsal root ganglia. J. Neurosci. 16: 4662 – 4672.en_US
dc.identifier.citedreferenceWright, E. M., K. S. Vogel & A. M. Davies. 1992. Neurotrophic factors promote the maturation of developing sensory neurons before they become dependent on these factors for survival. Neuron 9: 139 – 150.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.