Show simple item record

Seedling survival in a northern temperate forest understory is increased by elevated atmospheric carbon dioxide and atmospheric nitrogen deposition

dc.contributor.authorSefcik, Lesley T.en_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorEllsworth, David S.en_US
dc.date.accessioned2010-06-01T20:57:25Z
dc.date.available2010-06-01T20:57:25Z
dc.date.issued2007-01en_US
dc.identifier.citationSEFCIK, LESLEY T.; ZAK, DONALD R.; ELLSWORTH, DAVID S. (2007). "Seedling survival in a northern temperate forest understory is increased by elevated atmospheric carbon dioxide and atmospheric nitrogen deposition." Global Change Biology 13(1): 132-146. <http://hdl.handle.net/2027.42/74051>en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74051
dc.description.abstractWe tested the main and interactive effects of elevated carbon dioxide concentration ([CO 2 ]), nitrogen (N), and light availability on leaf photosynthesis, and plant growth and survival in understory seedlings grown in an N-limited northern hardwood forest. For two growing seasons, we exposed six species of tree seedlings ( Betula papyrifera, Populus tremuloides, Acer saccharum , Fagus grandifolia , Pinus strobus , and Prunus serotina ) to a factorial combination of atmospheric CO 2 (ambient, and elevated CO 2 at 658 Μmol CO 2  mol −1 ) and N deposition (ambient and ambient +30 kg N ha −1  yr −1 ) in open-top chambers placed in an understory light gradient. Elevated CO 2 exposure significantly increased apparent quantum efficiency of electron transport by 41% ( P <0.0001), light-limited photosynthesis by 47% ( P <0.0001), and light-saturated photosynthesis by 60% ( P <0.003) compared with seedlings grown in ambient [CO 2 ]. Experimental N deposition significantly increased light-limited photosynthesis as light availability increased ( P <0.037). Species differed in the magnitude of light-saturated photosynthetic response to elevated N and light treatments ( P <0.016). Elevated CO 2 exposure and high N availability did not affect seedling growth; however, growth increased slightly with light availability ( R 2 =0.26, P <0.0001). Experimental N deposition significantly increased average survival of all species by 48% ( P <0.012). However, seedling survival was greatest (85%) under conditions of both high [CO 2 ] and N deposition ( P <0.009). Path analysis determined that the greatest predictor for seedling survival in the understory was total biomass ( R 2 =0.39, P <0.001), and that carboxylation capacity ( V cmax ) was a better predictor for seedling growth and survival than maximum photosynthetic rate ( A max ). Our results suggest that increasing [CO 2 ] and N deposition from fossil fuel combustion could alter understory tree species recruitment dynamics through changes in seedling survival, and this has the potential to alter future forest species composition.en_US
dc.format.extent195213 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2006 Blackwell Publishing Ltden_US
dc.subject.otherElevated CO 2en_US
dc.subject.otherGrowthen_US
dc.subject.otherLight-limitationen_US
dc.subject.otherN-limitationen_US
dc.subject.otherNitrogenen_US
dc.subject.otherNorthern Hardwood Speciesen_US
dc.subject.otherPath Analysisen_US
dc.subject.otherPhotosynthesisen_US
dc.subject.otherShade Toleranceen_US
dc.subject.otherSurvivalen_US
dc.titleSeedling survival in a northern temperate forest understory is increased by elevated atmospheric carbon dioxide and atmospheric nitrogen depositionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, 440 Church Street, Ann Arbor, MI 48109-1041, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74051/1/j.1365-2486.2006.01293.x.pdf
dc.identifier.doi10.1111/j.1365-2486.2006.01293.xen_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceAber JD, Goodale CL, Ollinger SV et al. ( 2003 ) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience, 53, 375 – 389.en_US
dc.identifier.citedreferenceAber JD, Nadelhoffer KJ, Steudler P et al. ( 1989 ) Nitrogen saturation in northern forest ecosystems. Bioscience, 39, 378 – 386.en_US
dc.identifier.citedreferenceAber J, Neilson RP, McNulty S et al. ( 2001 ) Forest processes and global environmental change: predicting the effects of individual and multiple stressors. Bioscience, 51, 735 – 751.en_US
dc.identifier.citedreferenceBaker FS ( 1949 ) A revised tolerance table. Journal of Forestry, 47, 179 – 181.en_US
dc.identifier.citedreferenceBaraloto C, Forget PM, Goldberg DE ( 2005 ) Seed mass, seedling size and neotropical tree seedling establishment. Journal of Ecology, 93, 1156 – 1166.en_US
dc.identifier.citedreferenceBauer GA, Berntson GM, Bazzaz FA ( 2001 ) Regenerating temperate forests under elevated CO 2 and nitrogen deposition: comparing biochemical and stomatal limitation of photosynthesis. New Phytologist, 152, 249 – 266.en_US
dc.identifier.citedreferenceBazzaz FA, Coleman JS, Morse SR ( 1990 ) Growth response of seven major co-occurring tree species of the northeastern United States to elevated CO 2. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 20, 1479 – 1484.en_US
dc.identifier.citedreferenceBazzaz FA, Fajer ED ( 1992 ) Plant life in a CO 2 -rich world. Scientific American, 266, 68 – 74.en_US
dc.identifier.citedreferenceBazzaz FA, Miao SL ( 1993 ) Successional status, seed size, and responses of tree seedlings to CO 2, light, and nutrients. Ecology, 74, 104 – 112.en_US
dc.identifier.citedreferenceBeaudet M, Messier C, Hilbert DW et al. ( 2000 ) Leaf- and plant-level carbon gain in yellow birch, sugar maple, and beech seedlings from contrasting forest light environments. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 30, 390 – 404.en_US
dc.identifier.citedreferenceBondada BR, Syvertsen JP ( 2003 ) Leaf chlorophyll, net gas exchange and chloroplast ultrastructure in citrus leaves of different nitrogen status. Tree Physiology, 23, 553 – 559.en_US
dc.identifier.citedreferenceCatovsky S, Bazzaz FA ( 2002 ) Nitrogen availability influences regeneration of temperate tree species in the understory seedling bank. Ecological Applications, 12, 1056 – 1070.en_US
dc.identifier.citedreferenceCeccon E, Sanchez S, Campo J ( 2004 ) Tree seedling dynamics in two abandoned tropical dry forests of differing successional status in Yucatan, Mexico: a field experiment with N and P fertilization. Plant Ecology, 170, 277 – 285.en_US
dc.identifier.citedreferenceCrous KY, Ellsworth DS ( 2004 ) Canopy position affects photosynthetic adjustments to long-term elevated CO 2 concentration (FACE) in aging needles in a mature Pinus taeda forest. Tree Physiology, 24, 961 – 970.en_US
dc.identifier.citedreferenceCurtis PS, Vogel CS, Wang XZ et al. ( 2000 ) Gas exchange, leaf nitrogen, and growth efficiency of Populus tremuloides in a CO 2 -enriched atmosphere. Ecological Applications, 10, 3 – 17.en_US
dc.identifier.citedreferenceCurtis PS, Wang XZ ( 1998 ) A meta-analysis of elevated CO 2 effects on woody plant mass, form, and physiology. Oecologia, 113, 299 – 313.en_US
dc.identifier.citedreferenceDeLucia EH, Thomas RB ( 2000 ) Photosynthetic responses to CO 2 enrichment of four hardwood species in a forest understory. Oecologia, 122, 11 – 19.en_US
dc.identifier.citedreferenceEllsworth DS, Reich PB, Naumburg ES et al. ( 2004 ) A comparison of photosynthetic characteristics and leaf nitrogen responses of 16 species to atmospheric CO 2 across four free-air CO 2 enrichment (FACE) experiments. Global Change Biology, 10, 2121 – 2138.en_US
dc.identifier.citedreferenceFarquhar GD, von Caemmerer S, Berry JA ( 1980 ) A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta, 149, 78 – 90.en_US
dc.identifier.citedreferenceField CB, Chapin FS, Matson PA III. et al. ( 1992 ) Responses of terrestrial ecosystems to the changing atmosphere: a resource-based approach. Annual Review of Ecosystem and Systematics, 23, 201 – 235.en_US
dc.identifier.citedreferenceField C, Mooney HA ( 1983 ) The photosynthesis – nitrogen relationship in wild plants. In: On the Economy of Plant Form and Function ( ed. Givnish TJ ), pp. 25 – 53. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceGalloway JN, Aber JD, Erisman JW et al. ( 2003 ) The nitrogen cascade. Bioscience, 53, 341 – 356.en_US
dc.identifier.citedreferenceGrace JB, Pugesek BH ( 1998 ) On the use of path analysis and related procedures for the investigation of ecological problems. American Naturalist, 152, 151 – 159.en_US
dc.identifier.citedreferenceGreenep H, Turnbull MH, Whitehead D ( 2003 ) Response of photosynthesis in second-generation Pinus radiata trees to long-term exposure to elevated carbon dioxide partial pressure. Tree Physiology, 23, 569 – 576.en_US
dc.identifier.citedreferenceGueorguieva R, Krystal JH ( 2004 ) Move over ANOVA. Progress in analyzing repeated-measures data and its reflection in papers published in the Archives of General Psychiatry. Archives of General Psychiatry, 61, 310 – 317.en_US
dc.identifier.citedreferenceHÄttenschwiler S ( 2001 ) Tree seedling growth in natural deep shade: functional traits related to interspecific variation in response to elevated CO 2. Oecologia, 129, 31 – 42.en_US
dc.identifier.citedreferenceHÄttenschwiler S, KÖrner C ( 2000 ) Tree seedling responses to in situ CO 2 -enrichment differ among species and depend on understory light availability. Global Change Biology, 6, 213 – 226.en_US
dc.identifier.citedreferenceHÄttenschwiler S, Miglietta F, Raschi A et al. ( 1997 ) Thirty years of in situ tree growth under elevated CO 2: a model for future forest responses? Global Change Biology, 3, 463 – 471.en_US
dc.identifier.citedreferenceHanson PJ, McRoberts RE, Isebrands JG et al. ( 1987 ) An optimal sampling strategy for determining CO 2 exchange-rate as a function of photosynthetic photon flux-density. Photosynthetica, 21, 90 – 101.en_US
dc.identifier.citedreferenceHungate BA, Dukes JS, Shaw MR et al. ( 2003 ) Nitrogen and climate change. Science, 302, 1512 – 1513.en_US
dc.identifier.citedreferenceHoughton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA ), Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceJifon JL, Wolfe DW ( 2002 ) Photosynthetic acclimation to elevated CO 2 in Phaseolus vulgaris L. is altered by growth response to nitrogen supply. Global Change Biology, 8, 1018 – 1027.en_US
dc.identifier.citedreferenceKÖrner C ( 1991 ) Some often overlooked plant characteristics as determinants of plant growth: a reconsideration. Functional Ecology, 5, 162 – 173.en_US
dc.identifier.citedreferenceKÖrner C ( 2000 ) Biosphere responses to CO 2 enrichment. Ecological Applications, 10, 1590 – 1619.en_US
dc.identifier.citedreferenceKerstiens G ( 2001 ) Meta-analysis of the interaction between shade-tolerance, light environment and growth response of woody species to elevated CO 2. Acta Oecologica-International Journal of Ecology, 22, 61 – 69.en_US
dc.identifier.citedreferenceKitajima K ( 1994 ) Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia, 98, 419 – 428.en_US
dc.identifier.citedreferenceKubiske ME, Pregitzer KS, Mikan CJ et al. ( 1997 ) Populus tremuloides photosynthesis and crown architecture in response to elevated CO 2 and soil N availability. Oecologia, 110, 328 – 336.en_US
dc.identifier.citedreferenceKubiske ME, Zak DR, Pregitzer KS et al. ( 2002 ) Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO 2 concentration: interactions with shade and soil nitrogen. Tree Physiology, 22, 321 – 329.en_US
dc.identifier.citedreferenceKutik J, Lubomir N, Demmers-Derks HH et al. ( 1995 ) Chloroplast ultrastructure of sugar beet ( Beta vulgaris L.) cultivated in normal and elevated CO 2 concentrations with two contrasted nitrogen supplies. Journal of Experimental Botany, 46, 1797 – 1802.en_US
dc.identifier.citedreferenceLaitinen K, Luomala EM, Kellomaki S et al. ( 2000 ) Carbon assimilation and nitrogen in needles of fertilized and unfertilized field-grown Scots pine at natural and elevated concentrations of CO 2. Tree Physiology, 20, 881 – 892.en_US
dc.identifier.citedreferenceLatham RE ( 1992 ) Co-occurring tree species change rank in seedling performance with resources varied experimentally. Ecology, 73, 2129 – 2144.en_US
dc.identifier.citedreferenceLovett GM, Lindberg SE ( 1986 ) Dry deposition of nitrate to a deciduous forest. Biogeochemistry, 2, 137 – 148.en_US
dc.identifier.citedreferenceLovett GM, Lindberg SE ( 1993 ) Atmospheric deposition and canopy interactions of nitrogen in forests. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 23, 1603 – 1616.en_US
dc.identifier.citedreferenceLuo Y, Field CB, Mooney HA ( 1994 ) Predicting responses of photosynthesis and root fraction to elevated [CO 2 ] (A) – interactions among carbon, nitrogen and growth. Plant, Cell and Environment, 17, 1195 – 1204.en_US
dc.identifier.citedreferenceMagill AH, Aber JD, Currie WS et al. ( 2004 ) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7 – 28.en_US
dc.identifier.citedreferenceManter DK, Kavanagh KL, Rose CL ( 2005 ) Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates. Tree Physiology, 25, 1015 – 1021.en_US
dc.identifier.citedreferenceMcMurtrie RE, Medlyn BE, Dewar RC ( 2001 ) Increased understanding of nutrient immobilization in soil organic matter is critical for predicting the carbon sink strength of forest ecosystems over the next 100 years. Tree Physiology, 21, 831 – 839.en_US
dc.identifier.citedreferenceMedlyn BE, Badeck FW, De Pury DGG et al. ( 1999 ) Effects of elevated CO 2 on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell and Environment, 22, 1475 – 1495.en_US
dc.identifier.citedreferenceMedlyn BE, McMurtrie RE, Dewar RC et al. ( 2000 ) Soil processes dominate the long-term response of forest net primary productivity to increased temperature and atmospheric CO 2 concentration. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 30, 873 – 888.en_US
dc.identifier.citedreferenceMikan CJ, Zak DR, Kubiske ME et al. ( 2000 ) Combined effects of atmospheric CO 2 and N availability on the belowground carbon and nitrogen dynamics of aspen mesocosms. Oecologia, 124, 432 – 445.en_US
dc.identifier.citedreferenceMitchell RJ ( 2001 ) Path Analysis: pollination. In: Design and Analysis of Ecological Experiments ( eds Scheiner SM, Gurevitch J ), pp. 217 – 234. Oxford University Press Inc., New York City.en_US
dc.identifier.citedreferenceMontgomery R ( 2004 ) Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient. Tree Physiology, 24, 155 – 167.en_US
dc.identifier.citedreferenceNaumburg E, Ellsworth DS ( 2000 ) Photosynthesis sunfleck utilization potential of understory saplings growing under elevated CO 2 in FACE. Oecologia, 122, 163 – 174.en_US
dc.identifier.citedreferenceOren R, Ellsworth DS, Johnsen KH et al. ( 2001 ) Soil fertility limits carbon sequestration by forest ecosystems in a CO 2 -enriched atmosphere. Nature, 411, 469 – 472.en_US
dc.identifier.citedreferenceParent S, Messier C ( 1996 ) A simple and efficient method to estimate microsite light availability under a forest canopy. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 26, 151 – 154.en_US
dc.identifier.citedreferencePeterson AG, Ball JT, Luo YQ et al. ( 1999 ) The photosynthesis leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a meta-analysis. Global Change Biology, 5, 331 – 346.en_US
dc.identifier.citedreferencePoorter H ( 1989 ) Interspecific variation in relative growth rate: on ecological causes and physiological consequences. In: Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants ( eds Lambers H, Cambridge ML, Konings H, Pons TL ), pp. 45 – 68. SPB Academic Publishing, The Hague.en_US
dc.identifier.citedreferencePoorter H, Remkes C ( 1990 ) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia, 83, 553 – 559.en_US
dc.identifier.citedreferencePregitzer KS, Zak DR, Burton AJ et al. ( 2004 ) Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry, 68, 179 – 197.en_US
dc.identifier.citedreferenceReich PB, Tjoelker MG, Machado JL et al. ( 2006 ) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 439, 457 – 461.en_US
dc.identifier.citedreferenceReich PB, Walters MB, Ellsworth DS ( 1992 ) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365 – 392.en_US
dc.identifier.citedreferenceReich PB, Walters MB, Tjoelker MG et al. ( 1998 ) Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Functional Ecology, 12, 395 – 405.en_US
dc.identifier.citedreferenceRey A, Jarvis PG ( 1998 ) Long-term photosynthetic acclimation to increased atmospheric CO 2 concentration in young birch ( Betula pendula ) trees. Tree Physiology, 18, 441 – 450.en_US
dc.identifier.citedreferenceRochefort L, Bazzaz FA ( 1992 ) Growth response to elevated CO 2 in seedlings of four co-occurring birch species. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 22, 1583 – 1587.en_US
dc.identifier.citedreferenceRossell C, Gorsira B, Patch S ( 2005 ) Effects of white-tailed deer on vegetation structure and woody seedling composition in three forest types on the Piedmont Plateau. Forest Ecology and Management, 210, 415 – 424.en_US
dc.identifier.citedreferenceSaxe H, Ellsworth DS, Heath J ( 1998 ) Tree and forest functioning in an enriched CO 2 atmosphere. Tansley Review No. 98. New Phytologist, 139, 395 – 436.en_US
dc.identifier.citedreferenceSefcik LT, Zak DR, Ellsworth DS ( 2006 ) Photosynthetic responses to understory shade and elevated CO 2 in four northern hardwood tree species. Tree Physiology, 26, 1589 – 1599.en_US
dc.identifier.citedreferenceSholtis JD, Gunderson CA, Norby RJ et al. ( 2004 ) Persistent stimulation of photosynthesis by elevated CO 2 in a sweetgum ( Liquidambar styraciflua ) forest stand. New Phytologist, 162, 343 – 354.en_US
dc.identifier.citedreferenceSingsaas EL, Ort DR, DeLucia EH ( 2001 ) Variation in measured values of photosynthetic quantum yield in ecophysiological studies. Oecologia, 128, 15 – 23.en_US
dc.identifier.citedreferenceSpinnler D, Egh P, KÖrner C ( 2002 ) Four-year growth dynamics of beech-spruce model ecosystems under CO 2 enrichment on two different forest soils. Trees-Structure and Function, 16, 423 – 436.en_US
dc.identifier.citedreferenceSterck F, Bongers F ( 2001 ) Crown development in tropical rain forest trees: patterns with tree height and light availability. Journal of Ecology, 89, 1 – 13.en_US
dc.identifier.citedreferenceTissue DT, Griffin KL, Turnbull MH et al. ( 2001 ) Canopy position and needle age affect photosynthetic response in field-grown Pinus radiata after five years of exposure to elevated carbon dioxide partial pressure. Tree Physiology, 21, 915 – 923.en_US
dc.identifier.citedreferenceVitousek PM, Mooney HA, Lubchenco J et al. ( 1997 ) Human domination of earth's ecosystems. Science, 277, 494 – 499.en_US
dc.identifier.citedreferenceWalters MB, Kruger EL, Reich PB ( 1993a ) Relative growth-rate in relation to physiological and morphological traits for northern hardwood tree seedlings – species, light environment and ontogenetic considerations. Oecologia, 96, 219 – 231.en_US
dc.identifier.citedreferenceWalters MB, Kruger EL, Reich PB ( 1993b ) Growth, biomass distribution and CO 2 exchange of northern hardwood seedlings in high and low light – relationships with successional status and shade tolerance. Oecologia, 94, 7 – 16.en_US
dc.identifier.citedreferenceWalters MB, Reich PB ( 1996 ) Are shade tolerance, survival, and growth linked? Low light and, nitrogen effects on hardwood seedlings. Ecology, 77, 841 – 853.en_US
dc.identifier.citedreferenceWalters MB, Reich PB ( 2000 ) Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade. Ecology, 81, 1887 – 1901.en_US
dc.identifier.citedreferenceWolfe DW, Gifford RM, Hilbert D et al. ( 1998 ) Integration of photosynthetic acclimation to CO 2 at the whole-plant level. Global Change Biology, 4, 879 – 893.en_US
dc.identifier.citedreferenceZak DR, Grigal DF, Ohmann LF ( 1993 ) Kinetics of microbial respiration and nitrogen mineralization in Great-Lakes forests. Soil Science Society of America Journal, 57, 1100 – 1106.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.