Show simple item record

Paradoxical Effects of Chronic Morphine Treatment on the Temperature and Pituitary-Adrenal Responses to Acute Restraint Stress: A Chronic Stress Paradigm

dc.contributor.authorHoushyar, Hanien_US
dc.contributor.authorCooper, Z. D.en_US
dc.contributor.authorWoods, James H.en_US
dc.date.accessioned2010-06-01T21:07:34Z
dc.date.available2010-06-01T21:07:34Z
dc.date.issued2001-10en_US
dc.identifier.citationHoushyar, H.; Cooper, Z. D.; Woods, J. H. (2001). "Paradoxical Effects of Chronic Morphine Treatment on the Temperature and Pituitary-Adrenal Responses to Acute Restraint Stress: A Chronic Stress Paradigm." Journal of Neuroendocrinology 13(10): 862-874. <http://hdl.handle.net/2027.42/74210>en_US
dc.identifier.issn0953-8194en_US
dc.identifier.issn1365-2826en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74210
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11679055&dopt=citationen_US
dc.description.abstractBody temperature and pituitary-adrenal responses to restraint (15 min or 4 h) stress were evaluated in nondependent and morphine-dependent rats. Male Sprague-Dawley rats were treated twice daily with increasing doses of morphine (10–100 mg/kg, s.c.) for 16 days. Transmitters were implanted in the peritoneal cavity to monitor body temperature and blood was collected for hormone assays. Acute withdrawal from chronic morphine treatment was associated with reduced body weight, increased adrenal weight and decreased thymus weight. Sixteen days after termination of chronic morphine treatment, rats had recovered normal adrenal size, but still displayed marked thymus involution and reduced body weight. Restraint-induced hyperthermia was attenuated in morphine-dependent rats that had undergone 12-h withdrawal. Sixteen days after withdrawal, rats still had not fully recovered the hyperthermic response to restraint. Chronic morphine treatment resulted in a marked elevation of basal corticosterone concentrations. Despite the negative-feedback effects of elevated basal corticosterone concentrations, morphine-dependent rats that had undergone 12-h withdrawal displayed a potentiated and prolonged corticosterone response to restraint stress. In contrast, rats that had undergone 8-day and 16-day morphine withdrawal had recovered normal basal pituitary-adrenal activity, but displayed significantly reduced and shorter adrenocorticotropic hormone and corticosterone responses to restraint. These results suggest that chronic morphine dependence is a chronic stressor, resulting in profound and long-lasting changes in the temperature and pituitary-adrenal responses to acute restraint stress in a time-dependent manner. This morphine-dependence model may be useful in understanding the role that hormonal stress responses play in the maintenance and relapse to opioid use in humans.en_US
dc.format.extent391774 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science, Ltden_US
dc.rightsBritish Neuroendocrine Groupen_US
dc.subject.otherRestraint Stressen_US
dc.subject.otherMorphineen_US
dc.subject.otherTemperatureen_US
dc.subject.otherHPA Axisen_US
dc.titleParadoxical Effects of Chronic Morphine Treatment on the Temperature and Pituitary-Adrenal Responses to Acute Restraint Stress: A Chronic Stress Paradigmen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Psychology, University of Michigan, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationother* Pharmacology anden_US
dc.identifier.pmid11679055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74210/1/j.1365-2826.2001.00713.x.pdf
dc.identifier.doi10.1046/j.1365-2826.2001.00713.xen_US
dc.identifier.sourceJournal of Neuroendocrinologyen_US
dc.identifier.citedreferenceKreek MJ & Koob GF. Drug dependence: stress and dysregulation of brain reward pathways. Drug Alcohol Depend 1998; 51: 23 – 47.en_US
dc.identifier.citedreferenceShaham Y, Alvares K, Nespor SM, Grundberg NE. Effect of stress on oral morphine and fentanyl self-administration in rats. Pharmacol Biochem Behav 1992; 41: 615 – 619.en_US
dc.identifier.citedreferenceShaham Y. Immobilization stress-induced oral opioid self-administration and withdrawal in rats: role of conditioning factors and the effect of stress on ‘relapse’ to opioid drugs. Psychopharmacology 1993; 111: 477 – 485.en_US
dc.identifier.citedreferenceShaham Y, Rajabi H, Stewart J. Relapse to heroin-seeking in rats under opioid maintenance: the effects of stress, heroin priming, and withdrawal. J Neurosci 1996; 16: 1957 – 1963.en_US
dc.identifier.citedreferenceDeroche V, Piazza PV, Casolini P, Maccari S, Le Moal M, Simon H. Stress-induced sensitization to amphetamine and morphine psychomotor effects depend on stress-induced corticosterone secretion. Brain Res 1992; 598: 343 – 348.en_US
dc.identifier.citedreferenceDeroche V, Piazza PV, Casolini P, Le Moal M, Simon H. Sensitization to the psychomotor effects of amphetamine and morphine induced by food restriction depends on corticosterone secretion. Brain Res 1993; 611: 352 – 356.en_US
dc.identifier.citedreferenceDeroche V, Piazza PV, Le Moal M, Simon H. Social isolation-induced enhancement of the psychomotor effects of morphine depends on corticosterone secretion. Brain Res 1994; 640: 136 – 139.en_US
dc.identifier.citedreferenceShaham Y, Funk D, Erb S, Brown TJ, Walker CD, Stewart J. Corticotropin-releasing factor, but not corticosterone, is involved in stress-induced relapse to heroin-seeking in rats. J Neurosci 1997; 17: 2605 – 2614.en_US
dc.identifier.citedreferenceShaham Y, Erb S, Leung S, Buczek Y, Stewart J. CP-154,526, a selective, non-peptide antagonist of the corticotropin-releasing factor1 receptor attenuates stress-induced relapse to drug seeking in cocaine- and heroin-trained rats. Psychopharmacology 1998; 137: 184 – 190.en_US
dc.identifier.citedreferenceDeroche V, Marinelli M, Maccari S, Le Moal M, Simon H, Piazza PV. Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. J Neurosci 1995; 15: 7181 – 7188.en_US
dc.identifier.citedreferenceHermann JB. The pyretic action on rats of small doses of morphine. J Pharmacol Exp Ther 1942; 76: 309 – 315.en_US
dc.identifier.citedreferenceLotti VJ, Lomax P, George R. Temperature responses in the rat following intracerebral microinjection of morphine. J Pharmacol Exp Ther 1965; 150: 135 – 139.en_US
dc.identifier.citedreferenceCox B, Ary M, Chesarek W, Lomax P. Morphine hyperthermia in the rat: an action on the central thermostats. Eur J Pharmacol 1976; 36: 33 – 39.en_US
dc.identifier.citedreferenceGunne LM. The temperature response in rats during acute and chronic morphine administration: a study of morphine tolerance. Arch Int Pharmacodyn 1960; 129: 416 – 428.en_US
dc.identifier.citedreferenceAdler MW & Geller EB. The opioid system and temperature regulation. Annu Rev Pharmacol Toxicol 1988; 28: 429 – 444.en_US
dc.identifier.citedreferenceKatovich MJ, Simpkins JW, O'Meara J. Effects of opioid antagonists and their quaternary analogs on temperature changes in morphine-dependent rats. Life Sci 1986; 39: 1845 – 1854.en_US
dc.identifier.citedreferenceBhargava HN, Matwyshyn GA, Gerk PM, Bozek PS, Bailey MD, Ko KH, Simko RJ, Thorat SN. Effects of naltrexone pellet implantation on morphine tolerance and physical dependence in the rat. Gen Pharmacol 1994; 25: 149 – 155.en_US
dc.identifier.citedreferenceFrench ED. Dexamethasone blocks morphine-induced hypothermia in restrained rats. Life Sci 1979; 25: 1583 – 1590.en_US
dc.identifier.citedreferenceMartin GE & Lapp NL. Effect on core temperature of restraint after peripherally and centrally injected morphine in the Sprague-Dawley rat. Pharmacol Biochem Behav 1979; 10: 313 – 315.en_US
dc.identifier.citedreferenceMcDougal JN, Marques PR, Burks TF. Restraint alters the thermic response to morphine by postural interference. Pharmacol Biochem Behav 1983; 18: 495 – 499.en_US
dc.identifier.citedreferenceAppelbaum BD & Holtzman SG. Characterization of stress-induced potentiation of opioid effects in the rat. J Pharmacol Exp Ther 1984; 231: 555 – 565.en_US
dc.identifier.citedreferenceUshijima I, Tanaka M, Tsuda A, Koga S, Nagasaki N. Differential effects of morphine on core temperature in stress and non-stressed rats. Eur J Pharmacol 1985; 112: 331 – 337.en_US
dc.identifier.citedreferenceWright BE & Katovich MJ. Effect of restraint on drug-induced changes in skin and core temperature in biotelemetered rats. Pharmacol Biochem Behav 1996; 55: 219 – 225.en_US
dc.identifier.citedreferenceHoltzman SG & Villarreal JE. Morphine dependence and body temperature in rhesus monkeys. J Pharmacol Exp Ther 1969; 166: 125 – 133.en_US
dc.identifier.citedreferenceBuckingham JC & Cooper TA. Differences in hypothalamo-pituitary-adrenocortical activity in the rat after acute and prolonged treatment with morphine. Neuroendocrinology 1984; 38: 411 – 417.en_US
dc.identifier.citedreferenceBuckingham JC & Cooper TA. Interrelationships of opioidergic and adrenergic mechanisms controlling the secretion of cortictrophin releasing factor in the rat. Neuroendocrinology 1987; 46: 199 – 206.en_US
dc.identifier.citedreferenceIgnar DM & Kuhn CM. Effects of specific mu and kappa opiate tolerance and abstinence on hypothalmo-pituitary-adrenal axis secretion in the rat. J Pharmacol Exp Ther 1990; 255: 1287 – 1295.en_US
dc.identifier.citedreferenceGuaza C, Torrellas A, Borrell J, Borrell S. Effects of morphine upon the pituitary-adrenal system and adrenal catecholamines: a comparative study in cats and rats. Pharmacol Biochem Behav 1979; 11: 57 – 63.en_US
dc.identifier.citedreferenceEisenberg RM. Effects of chronic treatment with diazepam, phenobarbital, or amphetamine on naloxone-precipitated morphine withdrawal. Drug Alcohol Depend 1985; 15: 375 – 381.en_US
dc.identifier.citedreferenceMilanes MV, Laorden ML, Chapleur-Chateau M, Burlet A. Alterations in corticotropin-releasing factor and vasopressin content in rat brain during morphine withdrawal: correlation with hypothalamic noradrenergic activity and pituitary-adrenal response. J Pharmacol Exp Ther 1998; 285: 700 – 706.en_US
dc.identifier.citedreferenceFukunaga Y, Nishida S, Inoue N, Miyamoto M, Kishioka S, Yamamoto H. Time course of morphine withdrawal and preproenkephalin gene expression in the periaqueductal gray of rats. Mol Brain Res 1998; 55: 221 – 231.en_US
dc.identifier.citedreferenceBudziszewska BB, Jaworska L, Lason W. Repeated morphine administration down-regulates glucocorticoid, but not mineralocorticoid, receptors in the rat hippocampus. Psychoneuroendocrinology 1995; 20: 75 – 81.en_US
dc.identifier.citedreferenceNock B, Wich M, Cicero TJ. Chronic exposure to morphine increases corticosteroid-binding globulin. J Pharmacol Exp Ther 1997; 282: 1262 – 1268.en_US
dc.identifier.citedreferenceBuckingham JC & Cooper TA. Effects of naloxone on hypothalamo-pituitary-adrenocortical activity in the rat. Neuroendocrinology 1986; 42: 421 – 426.en_US
dc.identifier.citedreferenceZhou Y, Spangler R, Maggos CE, Wang XM, Han JS, Ho A, Kreek MJ. Hypothalamic-pituitary-adrenal activity and pro-opiomelanocortin mRNA levels in the hypothalamus and pituitary of the rat are differentially modulated by acute intermittent morphine with or without water restriction stress. J Endocrinol 1999; 163: 261 – 267.en_US
dc.identifier.citedreferenceAkana SF & Dallman MF. Feedback and facilitation in the adrenocortical system: unmasking facilitation by partial inhibition of the glucocorticoid response to prior stress. Endocrinology 1992; 131: 57 – 68.en_US
dc.identifier.citedreferenceVernikos J, Dallman MF, Bonner C, Katzen A, Shinsako J. Pituitary-adrenal function in rats chronically exposed to cold. Endocrinology 1982; 110: 413 – 420.en_US
dc.identifier.citedreferenceBhatnagar S, Mitchell JB, Betito K, Boksa P, Meaney MJ. Effects of chronic intermittent cold stress on pituitary adrenocortical and sympathetic adrenomedullary functioning. Physiol Behav 1995; 57: 633 – 639.en_US
dc.identifier.citedreferenceGarcia A, Marti O, Valles A, Dal-Zotto S, Armario A. Recovery of the hypothalamic-pituitary-adrenal response to stress. Neuroendocrinology 2000; 72: 114 – 125.en_US
dc.identifier.citedreferenceTallarida RJ & Murray RB. Manual for Pharmacologic Calculations with Computer Programs. New York: Springer-Verlag, 1987.en_US
dc.identifier.citedreferenceAry M & Lomax P. Influence of narcotic agents on temperature regulation. In: Loh HH, Ross DH, eds. Neurochemical Mechanisms of Opiates and Endorphins. New York: Raven Press, 1979: 429 – 451.en_US
dc.identifier.citedreferenceDallman MF, Akana SF, Scribner KA, Bradbury MJ, Walker CD, Strack AM, Cascio CS. Stress, feedback and facilitation in the hypothalamo-pituitary-adrenal axis. J Neuroendocinol 1991; 4: 517 – 526.en_US
dc.identifier.citedreferenceScribner KA, Akana SF, Walker CD, Dallman MF. Streptozotocin-diabetic rats exhibit facilitated adrenocorticotropin responses to acute stress, but normal sensitivity to feedback by corticosteroids. Endocrinology 1993; 133: 2667 – 2674.en_US
dc.identifier.citedreferenceBlanchard RJ, Nikylina JN, Sakai RR, Mckittrick C, McEwen B, Blanchard C. Behavioral and endocrine changes following chronic predatory stress. Physiol Behav 1998; 63: 561 – 569.en_US
dc.identifier.citedreferenceBuwalda B, de Boer SF, Van Kalkeren AA, Koolhaas JM. Physiological and behavioral effects of chronic intracerebroventricular infusion of corticotropin-releasing factor in the rat. Psychoneuroendocrinology 1997; 22: 297 – 309.en_US
dc.identifier.citedreferenceJacobson L, Akana SF, Cascio CS, Scribner K, Shinsako J, Dallman MF. The adrenocortical system responds slowly to removal of corticosterone in the absence of concurrent stress. Endocrinology 1989; 124: 2144 – 2152.en_US
dc.identifier.citedreferenceBhatnagar S & Dallman M. The paraventricular nucleus of the thalamus alters rhythms in core temperature and energy balance in a state-dependent manner. Brain Res 1999; 851: 66 – 75.en_US
dc.identifier.citedreferenceLong NC, Morimoto A, Nakamori T, Murakami N. The effect of physical restraint on IL-1B and LPS-induced fever. Physiol Behav 1991; 50: 625 – 628.en_US
dc.identifier.citedreferenceTerlouw EM, Kent S, Cremona S, Dantzer R. Effect of intracerebroventricular administration of vasopressin on stress-induced hyperthermia in rats. Physiol Behav 1996; 60: 417 – 424.en_US
dc.identifier.citedreferenceBhatnagar S & Dallman M. Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 1998; 84: 1025 – 1039.en_US
dc.identifier.citedreferenceAkana SF, Hanson ES, Horsley CJ, Strack AM, Bhatnagar S, Bradbury MJ, Milligan ED, Dallman MF. Clamped corticosterone (B) reveals the effect of endogenous B on both facilitated responsivity to acute restraint and metabolic responses to chronic stress. Stress 1996; 1: 33 – 49.en_US
dc.identifier.citedreferenceSapolksy RM, Krey LC, McEwen BS. Stress down-regulates corticosterone receptors in a site-specific manner in the brain. Endocrinology 1984; 114: 287 – 292.en_US
dc.identifier.citedreferenceSapolsky RM, Krey LC, McEwen BS. Down-regulation of neural corticosterone receptors by corticosterone and dexamethasone. Brain Res 1985; 339: 161 – 165.en_US
dc.identifier.citedreferenceSapolsky RM & Plotsky PM. Hypercortisolism and its possible neural bases. Biol Psychiatry 1990; 27: 937 – 952.en_US
dc.identifier.citedreferenceMeaney MJ, Bhatnagar S, Diorio J, Larocque S, Francis D, O'Donnel D, Shanks N, Sharma S, Smythe J, Viau V. Molecular basis for the development of individual differences in the hypothalamic-pituitary-adrenal stress response. Cell Mol Neurobiol 1993; 13: 321 – 347.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.