Show simple item record

On the distribution of anomalous mass within the Earth: forward models of the gravitational potential spectrum using ensembles of discrete mass elements

dc.contributor.authorJackson, Michael J.en_US
dc.contributor.authorPollack, Henry N.en_US
dc.contributor.authorSutton, Stephen T.en_US
dc.date.accessioned2010-06-01T21:10:18Z
dc.date.available2010-06-01T21:10:18Z
dc.date.issued1991-10en_US
dc.identifier.citationJackson, Michael J.; Pollack, Henry N.; Sutton, Stephen T. (1991). "On the distribution of anomalous mass within the Earth: forward models of the gravitational potential spectrum using ensembles of discrete mass elements." Geophysical Journal International 107(1): 83-94. <http://hdl.handle.net/2027.42/74253>en_US
dc.identifier.issn0956-540Xen_US
dc.identifier.issn1365-246Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74253
dc.format.extent1129921 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1991 Royal Astronomical Societyen_US
dc.subject.otherGeodynamicsen_US
dc.subject.otherGeoiden_US
dc.subject.otherGravityen_US
dc.subject.otherMantleen_US
dc.subject.otherPotentialen_US
dc.titleOn the distribution of anomalous mass within the Earth: forward models of the gravitational potential spectrum using ensembles of discrete mass elementsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, The University of Michigan, Ann Arbor, MI 48109 , USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74253/1/j.1365-246X.1991.tb01158.x.pdf
dc.identifier.doi10.1111/j.1365-246X.1991.tb01158.xen_US
dc.identifier.sourceGeophysical Journal Internationalen_US
dc.identifier.citedreferenceBowin, C., 1983. Depth of principal mass anomalies contributing to the earthapos;s geoidal undulations and gravity anomalies, Mar. Geod., 7, 61 – 100.en_US
dc.identifier.citedreferenceBowin, C., 1986. Topography at the core-mantle boundary, Geophys. Res. Lett., 13, 1513 – 1516.en_US
dc.identifier.citedreferenceBowin, C., Scheer, E. & Smith, W., 1986. Depth estimates from ratios of gravity, geoid, and gravity gradient anomalies, Geophysics, 51, 123 – 136.en_US
dc.identifier.citedreferenceCook, A. H., 1980. Interiors of the Planets, Cambridge University Press, New York.en_US
dc.identifier.citedreferenceCreager, K. C. & Jordan, T. H., 1986. Aspherical structure of the core-mantle boundary from PKP travel times, Geophys. Res. Lett., 13, 1497 – 1500.en_US
dc.identifier.citedreferenceDavies, G. F., 1984. Geophysical and isotopic constraints on mantle convection: an interim synthesis, J. geophys. Res., 89, 6017 – 6040.en_US
dc.identifier.citedreferenceDziewonski, A. M., 1984. Mapping the lower mantle: determination of lateral heterogeneity in P-velocity up to degree and order 6, J. geophys. Res., 89, 5929 – 5952.en_US
dc.identifier.citedreferenceGurnis, M., 1990a. Bounds on global dynamic topography from Phanerozoic flooding of continental platforms, Nature, 344, 754 – 756.en_US
dc.identifier.citedreferenceGurnis, M., 1990b. Plate-mantle coupling and continental flooding, Geophys. Res. Lett., 17, 623 – 626.en_US
dc.identifier.citedreferenceHaddon, R. A. W., 1982. Evidence for inhomogeneities near the core-mantle boundary, Phil. Trans. R. Soc. Lond., A, 306, 61 – 70.en_US
dc.identifier.citedreferenceHager, B. H., 1984. Subducted slabs and the geoid: constraints on mantle rheology and flow, J. geophys. Res., 89, 6003 – 6015.en_US
dc.identifier.citedreferenceHager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P., & Dziewonski, A. M., 1985. Lower mantle heterogeneity, dynamic topography, and the geoid, Nature, 313, 541 – 545.en_US
dc.identifier.citedreferenceKoch, D. M. & Ribe, N. M., 1989. The effect of lateral viscosity variations on surface observables, Geophys. Res. Lett., 16, 535 – 538.en_US
dc.identifier.citedreferenceLambeck, K., 1976. Lateral density anomalies in the upper mantle, J. geophys. Res., 81, 6333 – 6340.en_US
dc.identifier.citedreferenceLay, T., 1989. Structure of the core-mantle transition zone: a chemical and thermal boundary layer, EOS, Trans. Am. geophys. Un., 70, 49.en_US
dc.identifier.citedreferenceLerch, F. J., Klosko, S. M., Patel, G. B. & Wagner, C. A., 1985a. A gravity model for crustal dynamics (GEM-L2), J. geophys. Res., 90, 9301 – 9311.en_US
dc.identifier.citedreferenceLerch, F. J., Klosko, S. M., Wagner, C. A. & Patel, G. B., 1985b. On the accuracy of recent Goddard gravity models, J. geophys. Res., 90, 9312 – 9334.en_US
dc.identifier.citedreferenceLowrey, B. E., 1978. Lateral density anomalies and the earthapos;s gravitational field. Rep. No. NASA TM-79554, NASA- Goddard SFC, Greenbelt, MD.en_US
dc.identifier.citedreferenceMerrill, R. T. & McElhinny, M. W., 1983. The Earthapos;s Magnetic Field: Its History, Origin, and Planetary Perspective, Academic Press, New York.en_US
dc.identifier.citedreferenceMorelli, A. & Dziewonski, A. M., 1987. Topography of the core-mantle boundary and lateral heterogeneity of the liquid core, Nature, 325, 678 – 683.en_US
dc.identifier.citedreferencePhillips, R. J. & Lambeck, K., 1980. Gravity fields of the terrestrial planets: long-wavelength anomalies and tectonics, Rev. Geophys. Space Phys., 18, 27 – 76.en_US
dc.identifier.citedreferenceRicard, Y., Vigny, C. & Froidevaux, C., 1989. Mantle heterogeneities, geoid, and plate motion: a Monte Carlo inversion, J. geophys. Res., 94, 13 739 – 13 754.en_US
dc.identifier.citedreferenceRichards, M. A. & Hager, B. H., 1984. Geoid anomalies in a dynamic earth, J. geophys. Res., 89, 5987 – 6002.en_US
dc.identifier.citedreferenceRuff, L. J. & Anderson, D. L., 1980. Core formation, evolution, and convection: a geophysical model, Phys. Earth planet. Inter., 21, 181 – 201.en_US
dc.identifier.citedreferenceSilver, P. G. & Carlson, R. W., 1988. Deep slabs, geochemical heterogeneity, and the large-scale structure of mantle convection, Ann. Rev. Earth planet. Sci., 16, 477 – 541.en_US
dc.identifier.citedreferenceSnoke, J. A. & Sacks, I. S., 1986. Seismic modelling of lateral heterogeneity at the base of the mantle, Geophys. J. R. astr. Soc., 86, 801 – 814.en_US
dc.identifier.citedreferenceSutton, S. T., Pollack, H. N. & Jackson, M. J., 1991. Spherical harmonic representation of the gravitational potential of discrete spherical mass elements, Geophys. J. Int., 107, 77 – 82.en_US
dc.identifier.citedreferenceStacey, F. D. & Loper, D., 1983. The thermal boundary layer interpretation of D′ and its role as a plume source, Phys. Earth planet. Inter., 33, 45 – 55.en_US
dc.identifier.citedreferenceYoung, C. J., 1990. Excursions to the base of the mantle. PhD dissertation, University of Michigan, Ann Arbor.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.