Show simple item record

Structural and Functional Evolution of Vertebrate Neuroendocrine Stress Systems

dc.contributor.authorDenver, Robert Johnen_US
dc.date.accessioned2010-06-01T21:18:00Z
dc.date.available2010-06-01T21:18:00Z
dc.date.issued2009-04en_US
dc.identifier.citationDenver, Robert John (2009). "Structural and Functional Evolution of Vertebrate Neuroendocrine Stress Systems." Annals of the New York Academy of Sciences 1163(1 Trends in Comparative Endocrinology and Neurobiology ): 1-16. <http://hdl.handle.net/2027.42/74370>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74370
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19456324&dopt=citationen_US
dc.format.extent408795 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights© 2009 The New York Academy of Sciencesen_US
dc.subject.otherStressen_US
dc.subject.otherNeuroendocrine Systemen_US
dc.subject.otherCorticotropin-releasing Factoren_US
dc.subject.otherUrocortinen_US
dc.subject.otherEvolutionen_US
dc.subject.otherCorticosteroidsen_US
dc.titleStructural and Functional Evolution of Vertebrate Neuroendocrine Stress Systemsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular and Developmental Biology, and Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, Michigan, USAen_US
dc.identifier.pmid19456324en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74370/1/j.1749-6632.2009.04433.x.pdf
dc.identifier.doi10.1111/j.1749-6632.2009.04433.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceMcCormick, S.D. & D. Bradshaw. 2006. Hormonal control of salt and water balance in vertebrates. Gen. Comp. Endocrinol. 147: 3 – 8.en_US
dc.identifier.citedreferenceDe Kloet, E.R. et al. 1998. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 19: 269 – 301.en_US
dc.identifier.citedreferenceSapolsky, R.M., L.M. Romero & A.U. Munck. 2000. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21: 55 – 89.en_US
dc.identifier.citedreferenceDallman, M.F. et al. 2006. Glucocorticoids, chronic stress, and obesity. Prog. Brain. Res. 153: 75 – 105.en_US
dc.identifier.citedreferencePecoraro, N. et al. 2006. From Malthus to motive: how the HPA axis engineers the phenotype, yoking needs to wants. Prog. Neurobiol. 79: 247 – 340.en_US
dc.identifier.citedreferenceTasker, J.G., S. Di & R. Malcher-Lopes. 2006. Minireview: rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology 147: 5549 – 5556.en_US
dc.identifier.citedreferenceStefano, G.B. et al. 2002. The blueprint for stress can be found in invertebrates. Neuroendocrinol. Lett. 23: 85 – 93.en_US
dc.identifier.citedreferenceLovejoy, D.A. & S. Jahan. 2006. Phylogeny of the corticotropin-releasing factor family of peptides in the metazoa. Gen. Comp. Endocrinol. 146: 1 – 8.en_US
dc.identifier.citedreferenceDenver, R.J. 1999. Evolution of the corticotropin-releasing hormone signaling system and its role in stress-induced phenotypic plasticity. Ann. N. Y. Acad. Sci. 897: 46 – 53.en_US
dc.identifier.citedreferenceLopez-Bucio, J. et al. 2006. Novel signals for plant development. Current Opinion in Plant Biology 9: 523 – 529.en_US
dc.identifier.citedreferenceAsami, T., T. Nakano & S. Fujioka. 2005. Plant brassinosteroid hormones. Plant Horm. 72: 479 – 504.en_US
dc.identifier.citedreferenceLi, J.M. & H. Jin. 2007. Regulation of brassinosteroid signaling. Trends in Plant Science 12: 37 – 41.en_US
dc.identifier.citedreferenceThornton, J.W., E. Need & D. Crews. 2003. Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301: 1714 – 1717.en_US
dc.identifier.citedreferenceNorris, D. 2006. Vertebrate Endocrinology. Academic Press. New York.en_US
dc.identifier.citedreferenceThornton, J.W. 2001. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc. Natl. Acad. Sci. U.S.A. 98: 5671 – 5676.en_US
dc.identifier.citedreferenceBridgham, J.T., S.M. Carroll & J.W. Thornton. 2006. Evolution of hormone-receptor complexity by molecular exploitation. Science 312: 97 – 101.en_US
dc.identifier.citedreferenceNunez, S. & J.M. Trant. 1999. Regulation of interrenal gland steroidogenesis in the Atlantic stingray (Dasyatis sabina). J. Exp. Zool. 284: 517 – 525.en_US
dc.identifier.citedreferenceJiang, J.Q. et al. 1998. Eel (Anguilla japonica) testis 11 beta-hydroxylase gene is expressed in interrenal tissue and its product lacks aldosterone synthesizing activity. Mol. Cell. Endocrinol. 146: 207 – 211.en_US
dc.identifier.citedreferenceWendelaar Bonga, S.E. 1993. Endocrinology. In The Physiology of Fishes (CRC Series in Marine Science). D.H. Evans, Ed.: 469 – 502. CRC Press. Roca Raton, FL.en_US
dc.identifier.citedreferenceVale, W., Vaughan, J. & Perrin, M. 1997. Corticotropin-releasing factor (CRF) family of ligands and their receptors. The Endocrinologist 7 ( Suppl ): S3 – S9.en_US
dc.identifier.citedreferenceVale, W. et al. 1981. Characterization of a 41-amino acid residue ovine hypothalamic peptide that stimulates the secretion of corticotropin and B-endorphin. Science 213: 1394 – 1397.en_US
dc.identifier.citedreferenceCummings, S. et al. 1983. Corticotropin-releasing factor immunoreactivity is widely distributed within the central nervous system of the rat: an immunohistochemical study. J. Neurosci. 3: 1355 – 1368.en_US
dc.identifier.citedreferenceLovejoy, D.A. & R.J. Balment. 1999. Evolution and physiology of the corticotropin-releasing factor (CRF) family of neuropeptides in vertebrates. Gen. Comp. Endocrinol. 115: 1 – 22.en_US
dc.identifier.citedreferenceYao, M., N.J. Westphal & R.J. Denver. 2004. Distribution and acute stressor-induced activation of corticotrophin-releasing hormone neurones in the central nervous system of Xenopus laevis. J. Neuroendocrinol. 16: 880 – 893.en_US
dc.identifier.citedreferenceYao, M., M. Stenzel-Poore & R.J. Denver. 2007. Structural and functional conservation of vertebrate corticotropin-releasing factor genes: evidence for a critical role for a conserved cyclic AMP response element. Endocrinology 148: 2518 – 2531.en_US
dc.identifier.citedreferenceYao, M. & R.J. Denver. 2007. Regulation of vertebrate corticotropin-releasing factor genes. Gen. Comp. Endocrinol. 153: 200 – 216.en_US
dc.identifier.citedreferenceDautzenberg, F.M. & R.L. Hauger. 2002. The CRF peptide family and their receptors: yet more partners discovered. Trends in Pharmacol. Sci. 23: 71 – 77.en_US
dc.identifier.citedreferenceDautzenberg, F.M. et al. 1997. Identification of two corticotropin-releasing factor receptors from Xenopus laevis with high ligand selectivity: unusual pharmacology of the type 1 receptor. J. Neurochem. 69: 1640 – 1649.en_US
dc.identifier.citedreferenceIto, Y. et al. 2006. Cloning and distribution of the bullfrog type 1 and type 2 corticotropin-releasing factor receptors. Gen. Comp. Endocrinol. 146: 291 – 295.en_US
dc.identifier.citedreferenceDe Groef, B. et al. 2003. Corticotropin-releasing hormone (CRH)-induced thyrotropin release is directly mediated through CRH receptor type 2 on thyrotropes. Endocrinology 144: 5537 – 5544.en_US
dc.identifier.citedreferenceYu, J.X., L.Y. Xie & A.B. AbouSamra. 1996. Molecular cloning of a type A chicken corticotropin-releasing factor receptor with high affinity for urotensin I. Endocrinology 137: 192 – 197.en_US
dc.identifier.citedreferenceArai, M., I.Q. Assil & A.B. Abou-Samra. 2001. Characterization of three corticotropin-releasing factor receptors in catfish: a novel third receptor is predominantly expressed in pituitary and urophysis. Endocrinology 142: 446 – 454.en_US
dc.identifier.citedreferenceCardoso, J.C.R. et al. 2003. Isolation and characterisation of the corticotropin releasing factor receptor 1 (CRFR1) gene in a teleost fish, Fugu rubripes. DNA Seq. 14: 215 – 218.en_US
dc.identifier.citedreferencePohl, S. et al. 2001. Cloning and functional pharmacology of two corticotropin-releasing factor receptors from a teleost fish. Eur. J. Pharmacol. 430: 193 – 202.en_US
dc.identifier.citedreferenceChen, C.C. & R.D. Fernald. 2008. Sequences, expression patterns and regulation of the corticotropin-releasing factor system in a teleost. Gen. Comp. Endocrinol. 157: 148 – 155.en_US
dc.identifier.citedreferenceHuising, M. et al. 2004. Structural characterisation of a cyprinid (Cyprinus carpio L.) CRH, CRH-BP and CRH-R1, and the role of these proteins in the acute stress response. J. Mol. Endocrinol. 32: 627 – 648.en_US
dc.identifier.citedreferenceDe Groef, B. et al. 2006. Role of corticotropin-releasing hormone as a thyrotropin-releasing factor in non-mammalian vertebrates. Gen. Comp. Endocrinol. 146: 62 – 68.en_US
dc.identifier.citedreferenceOkada, R. et al. 2007. Involvement of the corticotropin-releasing factor (CRF) type 2 receptor in CRF-induced thyrotropin release by the amphibian pituitary gland. Gen. Comp. Endocrinol. 150: 437 – 444.en_US
dc.identifier.citedreferenceDenver, R.J., G.C. Boorse & K.A. Glennemeier. 2002. Endocrinology of complex life cycles: amphibians. In Hormones, Brain and Behavior, Vol. 2. D. Pfaff et al., Eds.: 469 – 513. Academic Press, Inc., San Diego.en_US
dc.identifier.citedreferenceLederis, K. et al. 1982. Complete amino acid sequence of urotensin I, a hypotensive and corticotropin-releasing neuropeptide from Catostomus.. Science 218: 162 – 165.en_US
dc.identifier.citedreferenceMontecucchi, P.C. & A. Henschen. 1981. Amino acid composition and sequence analysis of sauvagine, a new active peptide from the skin of Phyllomedusa sauvagei. Int. J. Pept. Protein Res. 18: 113 – 120.en_US
dc.identifier.citedreferenceOkawara, Y. et al. 1988. Cloning and sequence analysis of cDNA for corticotropin-releasing factor precursor from the teleost fish Catostomus commersoni. Proc. Natl. Acad. Sci. U.S.A. 85: 8439 – 8443.en_US
dc.identifier.citedreferenceStenzel-Poore, M.P. et al. 1992. Characterization of the genomic corticotropin-releasing factor (CRF) gene from Xenopus laevis: two members of the CRF family exist in amphibians. Mol. Endocrinol. 6: 1716 – 1724.en_US
dc.identifier.citedreferenceVaughan, J. et al. 1995. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378: 287 – 292.en_US
dc.identifier.citedreferenceDonaldson, C.J. et al. 1996. Cloning and characterization of human urocortin. Endocrinology 137: 2167 – 2170.en_US
dc.identifier.citedreferenceBoorse, G.C. et al. 2005. Urocortins of the South African clawed frog, Xenopus laevis: conservation of structure and function in tetrapod evolution. Endocrinology 146: 4851 – 4860.en_US
dc.identifier.citedreferenceHsu, S.Y.H. & A.J.W.   2001. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nature Medicine 7: 605 – 611.en_US
dc.identifier.citedreferenceReyes, T.M. et al. 2001. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc. Natl. Acad. Sci. U.S.A. 98: 2843 – 2848.en_US
dc.identifier.citedreferenceLewis, K. et al. 2001. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc. Natl. Acad. Sci. U.S.A. 98: 7570 – 7575.en_US
dc.identifier.citedreferenceHauger, R.L. et al. 2003. International union of pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands. Pharmacol. Rev. 55: 21 – 26.en_US
dc.identifier.citedreferenceSeasholtz, A.F., Valverde, R.A. & Denver, R.J. 2002. Corticotropin-releasing hormone-binding protein (CRH-BP): biochemistry and function from fishes to mammals. J. Endocrinol. 175: 89 – 97.en_US
dc.identifier.citedreferencePotter, E. et al. 1991. Cloning and characterization of the cDNAs for human and rat corticotropin releasing factor binding proteins. Nature 349: 423 – 426.en_US
dc.identifier.citedreferenceAlderman, S.L. & N.J. Bernier. 2007. Localization of corticotropin-releasing factor, urotensin I, and CRF-binding protein gene expression in the brain of the zebrafish, Danio rerio. J. Comp. Neurol. 502: 783 – 793.en_US
dc.identifier.citedreferenceAlderman, S.L., J.C. Raine & N.J. Bernier. 2008. Distribution and regional stressor-induced regulation of corticotrophin-releasing factor binding protein in rainbow trout (Oncorhynchus mykiss). J. Neuroendocrinol. 20: 347 – 358.en_US
dc.identifier.citedreferenceHuising, M.O. & G. Flik. 2005. The remarkable conservation of corticotropin-releasing hormone (CRH)-binding protein in the honeybee (Apis mellifera) dates the CRH system to a common ancestor of insects and vertebrates. Endocrinology 146: 2165 – 2170.en_US
dc.identifier.citedreferenceSeasholtz, A.F. et al. 2001. Mouse models of altered CRH-binding protein expression. Peptides 22: 743 – 751.en_US
dc.identifier.citedreferenceBoorse, G.C. & R.J. Denver. 2006. Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides. Gen. Comp. Endocrinol. 146: 9 – 18.en_US
dc.identifier.citedreferenceBehan, D.P. et al. 1996. Measurement of corticotropin-releasing factor (CRF), CRF-binding protein (CRF-BP), and CRF/CRF-BP complex in human plasma by two-site enzyme-linked immunoabsorbant assay. J. Clin. Endocrinol. Metab. 81: 2579 – 2586.en_US
dc.identifier.citedreferenceLinton, E. et al. 1993. Corticotropin releasing hormone-binding protein (CRH-BP) plasma levels decrease during the third trimester of normal pregnancy. J. Clin. Endocrinol. Metab. 76: 260 – 262.en_US
dc.identifier.citedreferenceMcLean, M. & R. Smith. 2001. Corticotrophin-releasing hormone and human parturition. Reproduction 121: 493 – 501.en_US
dc.identifier.citedreferenceHillhouse, E.W. & D.K. Grammatopoulos. 2002. Role of stress peptides during human pregnancy and labour. Reproduction 124: 323 – 329.en_US
dc.identifier.citedreferenceBoorse, G.C. et al. 2006. Corticotropin-releasing factor is cytoprotective in Xenopus tadpole tail: Coordination of ligand, receptor, and binding protein in tail muscle cell survival. Endocrinology 147: 1498 – 1507.en_US
dc.identifier.citedreferenceBerry, D.L. et al. 1998. The expression pattern of thyroid hormone response genes in remodeling tadpole tissues defines distinct growth and resorption gene expression programs. Dev. Biol. 203: 24 – 35.en_US
dc.identifier.citedreferenceBerry, D.L., R.A. Schwartzman & D.D. Brown. 1998. The expression pattern of thyroid hormone response genes in the tadpole tail identifies multiple resorption programs. Dev. Biol. 203: 12 – 23.en_US
dc.identifier.citedreferenceCrespi, E.J. & R.J. Denver. 2005. Roles of stress hormones in food intake regulation in anuran amphibians throughout the life cycle. Comp. Biochem. & Physiol. A-Comp. Physiol. 141: 381 – 390.en_US
dc.identifier.citedreferenceMastorakos, G. & E. Zapanti. 2004. Thy hypothalamic-pituitary-adrenal axis in the neuroendocrine regulation of food intake and obesity: The role of corticotropin releasing hormone. Nutritional Neuroscience. 7: 271 – 280.en_US
dc.identifier.citedreferenceFlik, G. et al. 2006. CRF and stress in fish. Gen. Comp. Endocrinol. 146: 36 – 44.en_US
dc.identifier.citedreferenceBale, T.L. et al. 2002. Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J. Neurosci. 22: 193 – 199.en_US
dc.identifier.citedreferenceBale, T.L. & W.W. Vale. 2004. CRF and CRF receptors: Role in stress responsivity and other behaviors. Ann. Rev. Pharmacol. & Tox. 44: 525 – 557.en_US
dc.identifier.citedreferenceFenoglio, K.A., K.L. Brunson & T.Z. Baram. 2006. Hippocampal neuroplasticity induced by early-life stress: functional and molecular aspects. Front. Neuroendocrinol. 27: 180 – 192.en_US
dc.identifier.citedreferenceGulpinar, M.A. & B.C. Yegen. 2004. The physiology of learning and memory: role of peptides and stress. Curr. Protein & Peptide Sci. 5: 457 – 473.en_US
dc.identifier.citedreferenceRoozendaal, B., G. Schelling & J.L. McGaugh. 2008. Corticotropin-releasing factor in the basolateral amygdala enhances memory consolidation via an interaction with the beta-adrenoceptor-cAMP pathway: dependence on glucocorticoid receptor activation. J. Neurosci. 28: 6642 – 6651.en_US
dc.identifier.citedreferenceTodorovic, C. et al. 2007. Differential activation of CRF receptor subtypes removes stress-induced memory deficit and anxiety. European J. Neurosci. 25: 3385 – 3397.en_US
dc.identifier.citedreferenceCarlin, K.M., W.W. Vale & T.L. Bale. 2006. Vital functions of corticotropin-releasing factor (CRF) pathways in maintenance and regulation of energy homeostasis. Proc. Natl. Acad. Sci. U.S.A. 103: 3462 – 3467.en_US
dc.identifier.citedreferenceMajzoub, J.A. et al. 1999. A central theory of preterm and term labor: putative role for corticotropin-releasing hormone. Am. J. Obst. & Gynecol. 180: S232 - S241.en_US
dc.identifier.citedreferenceTsigos, C. & G.P. Chrousos. 2002. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosomat. Res. 53: 865 – 871.en_US
dc.identifier.citedreferenceFekete, E.M. & E.P. Zorrilla. 2007. Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: ancient CRF paralogs. Front. Neuroendocrinol. 28: 1 – 27.en_US
dc.identifier.citedreferenceRissman, R.A. et al. 2007. Corticotropin-releasing factor receptors differentially regulate stress-induced tau phosphorylation. J. Neurosci. 27: 6552 – 6562.en_US
dc.identifier.citedreferenceWingfield, J.C. et al. 1998. Ecological bases of hormone-behavior interactions: the “emergency life history stage”. Am. Zool. 38: 191 – 206.en_US
dc.identifier.citedreferenceSapolsky, R.M. 2000. Stress hormones: good and bad. Neurobiol. Dis. 7: 540 – 542.en_US
dc.identifier.citedreferenceLicht, P., B.R. McCreery, R. Barnes, & R. Pang. 1983. Seasonal and stress related changes in plasma gonadotropins, sex steroids, and corticosterone in the bullfrog, Rana catesbeiana. Gen. Comp. Endocrinol. 50: 124 – 145.en_US
dc.identifier.citedreferenceZerani, M., F. Amabili, G. Mosconi, & A. Gobbetti. 1991. Effects of captivity stress on plasma steroid-levels in the green frog, Rana esculenta, during the annual reproductive cycle. Comp. Biochem. & Physiol A-Comp. Physiol. 98: 491 – 496.en_US
dc.identifier.citedreferenceCrespi, E.J. & R.J. Denver. 2004. Ontogeny of corticotropin-releasing factor effects on locomotion and foraging in the Western spadefoot toad (Spea hammondii). Horm. Behav. 46: 399 – 410.en_US
dc.identifier.citedreferenceVamvakopoulos, N.C. et al. 1990. Structural analysis of the regulatory region of the human corticotropin releasing hormone gene. Febs Letters. 267: 1 – 5.en_US
dc.identifier.citedreferenceJohannessen, M. et al. 2004. Synergistic activation of CREB-mediated transcription by forskolin and phorbol ester requires PKC and depends on the glutamine-rich Q2 transactivation domain. Cellular Signalling. 16: 1187 – 1199.en_US
dc.identifier.citedreferenceMayr, B. & M. Montminy. 2001. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature Rev. Mol. Cell Biol. 2: 599 – 609.en_US
dc.identifier.citedreferenceSeasholtz, A.F., R.C. Thompson & J.O. Douglass. 1988. Identification of a cyclic adenosine monophosphate-responsive element in the rat corticotropin-releasing hormone gene. Mol. Endocrinol. 2: 1311 – 1319.en_US
dc.identifier.citedreferenceSpengler, D. et al. 1992. Identification and characterization of a 3′,5′-cyclic adenosine monophosphate-responsive element in the human corticotropin-releasing hormone gene promoter. Mol. Endocrinol. 6: 1931 – 1941.en_US
dc.identifier.citedreferenceNikodemova, M. et al. 2003. Cyclic adenosine 3′,5′-monophosphate regulation of corticotropin-releasing hormone promoter activity in AtT-20 cells and in a transformed hypothalamic cell line. Endocrinology 144: 1292 – 1300.en_US
dc.identifier.citedreferenceVamvakopoulos, N.C. & G.P. Chrousos. 1994. Hormonal-regulation of human corticotropin-releasing hormone gene-expression —implications for the stress-response and immune/inflammatory reaction. Endocr. Rev. 15: 409 – 420.en_US
dc.identifier.citedreferenceMalkoski, S.P. & R.I. Dorin. 1999. Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Mol. Endocrinol. 13: 1629 – 1644.en_US
dc.identifier.citedreferenceYao, M., J. Schulkin & R.J. Denver. 2008. Evolutionarily conserved glucocorticoid regulation of corticotropin-releasing factor expression. Endocrinology 149: 2352 – 2360en_US
dc.identifier.citedreferenceKovacs, K.J. & P.E. Sawchenko. 1996. Sequence of stress-induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons. J. Neurosci. 16: 262 – 273.en_US
dc.identifier.citedreferenceKovacs, K.J. & P.E. Sawchenko. 1996. Regulation of stress-induced transcriptional changes in the hypothalamic neurosecretory neurons. J. Mol. Neurosci. 7: 125 – 133.en_US
dc.identifier.citedreferenceKovacs, K.J., C. Arias & P.E. Sawchenko. 1998. Protein synthesis blockade differentially affects the stress-induced transcriptional activation of neuropeptide genes in parvocellular neurosecretory neurons. Brain Res. Mol. Brain Res. 54: 85 – 91.en_US
dc.identifier.citedreferenceWilson, T.E. et al. 1991. Identification of the DNA-binding site for NGFI-B by genetic selection in yeast. Science 252: 1296 – 1300.en_US
dc.identifier.citedreferenceMaira, M. et al. 2003. Dimer-specific potentiation of NGFI-B (Nur77) transcriptional activity by the protein kinase a pathway and AF-1-dependent coactivator recruitment. Mol. Cell. Biol. 23: 763 – 776.en_US
dc.identifier.citedreferenceMurphy, E.P. & O.M. Conneely. 1997. Neuroendocrine regulation of the hypothalamic pituitary adrenal axis by the nurr1/nur77 subfamily of nuclear receptors. Mol. Endocrinol. 11: 39 – 47.en_US
dc.identifier.citedreferenceKovalovsky, D. et al. 2002. Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: involvement of calcium, protein kinase A, and MAPK pathways. Mol. Endocrinol. 16: 1638 – 1651.en_US
dc.identifier.citedreferenceDallman, M.F. et al. 1992. Stress, feedback and facilitation in the hypothalamo-pituitary-adrenal axis. J. Neuroendocrinol. 4: 517 – 526.en_US
dc.identifier.citedreferenceWhitnall, M.H. 1993. Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog. Neurobiol. 40: 573 – 629.en_US
dc.identifier.citedreferenceMakino, S., K. Hashimoto & P.W. Gold. 2002. Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol. Biochem. Behav. 73: 147 – 158.en_US
dc.identifier.citedreferenceSchulkin, J., P.W. Gold & B.S. McEwen. 1998. Induction of corticotropin-releasing hormone gene expression by glucocorticoids: implication for understanding the states of fear and anxiety and allostatic load. Psychoneuroendocrinology 23: 219 – 243.en_US
dc.identifier.citedreferenceCeccatelli, S. et al. 1989. Coexistence of glucocorticoid receptor-like immunoreactivity with neuropeptides in the hypothalamic paraventricular nucleus. Exp. Brain Res. 78: 33 – 42.en_US
dc.identifier.citedreferenceCintra, A. et al. 1987. Presence of glucocorticoid receptor immunoreactivity in corticotrophin releasing factor and in growth hormone releasing factor immunoreactive neurons of the rat di- and telencephalon. Neurosci. Lett. 77: 25 – 30.en_US
dc.identifier.citedreferenceCintra, A. et al. 1991. Central peptidergic neurons as targets for glucocorticoid action: evidence for the presence of glucocorticoid receptor immunoreactivity in various types of classes of peptidergic neurons. J. Steroid Biochem. Mol. Biol. 40: 93 – 103.en_US
dc.identifier.citedreferenceBernier, N.J., N. Bedard & R.E. Peter. 2004. Effects of cortisol on food intake, growth, and forebrain neuropeptide Y and corticotropin-releasing factor gene expression in goldfish. Gen. Comp. Endocrinol. 135: 230 – 240.en_US
dc.identifier.citedreferenceBernier, N.J., X.W. Lin & R.E. Peter. 1999. Differential expression of corticotropin-releasing factor (CRF) and urotensin I precursor genes, and evidence of CRF gene expression regulated by cortisol in goldfish brain. Gen. Comp. Endocrinol. 116: 461 – 477.en_US
dc.identifier.citedreferenceMorley, S.D. et al. 1991. Corticotropin-releasing factor (CRF) gene family in the brain of the teleost fish Catostomus commersoni (white sucker): molecular analysis predicts distinct precursors for two CRFs and one urotensin I peptide. Mol. Mar. Biol. Biotechnol. 1: 48 – 57.en_US
dc.identifier.citedreferenceOlivereau, M. & J. Olivereau. 1990. Effect of pharmacological adrenalectomy on corticotropin-releasing factor-like and arginine vasotocin immunoreactivities in the brain and pituitary of the eel: immunocytochemical study. Gen. Comp. Endocrinol. 80: 199 – 215.en_US
dc.identifier.citedreferenceFryer, J.N. & C. Boudreault-Chateauvert. 1981. Cytological evidence for activation of neuroendocrine cells in the parvocellular preoptic nucleus of the goldfish hypothalamus following pharmacological adrenalectomy. Cell and Tissue Res. 218: 129 – 140.en_US
dc.identifier.citedreferenceSapolsky, R.M., S. Zolamorgan & L.R. Squire. 1991. Inhibition of glucocorticoid secretion by the hippocampal formation in the primate. J. Neurosci. 11: 3695 – 3704.en_US
dc.identifier.citedreferenceHerman, J.P. et al. 2003. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front. Neuroendocrinol. 24: 151 – 180.en_US
dc.identifier.citedreferenceHerman, J.P. et al. 2005. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol. Biol. Psychiatry 29: 1201 – 1213.en_US
dc.identifier.citedreferenceHerman, J.P. et al. 1989. Evidence for hippocampal regulation of neuro-endocrine neurons of the hypothalamo pituitary adrenocortical axis. J. Neurosci. 9: 3072 – 3082.en_US
dc.identifier.citedreferenceJacobson, L. & R. Sapolsky. 1991. The role of the hippocampus in feedback-regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr. Rev. 12: 118 – 134.en_US
dc.identifier.citedreferenceHerman, J.P. & W.E. Cullinan. 1997. Neurocircuitry of stress: central control of the hypothalamo- pituitary-adrenocortical axis. Trends Neurosci. 20: 78 – 84.en_US
dc.identifier.citedreferenceCunningham, E.T., M.C. Bohn & P.E. Sawchenko. 1990. Organization of adrenergic inputs to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J. Comp. Neurol. 292: 651 – 667.en_US
dc.identifier.citedreferenceSawchenko, P.E. & L.W. Swanson. 1983. The organization and biochemical specificity of afferent projections to the paraventricular and supraoptic nuclei. Prog. Brain Res. 60: 19 – 29.en_US
dc.identifier.citedreferenceGray, T.S. 1993. Amygdaloid CRF pathways: role in autonomic, neuroendocrine, and behavioral responses to stress. Ann. N. Y. Acad. Sci. 697: 53 – 60.en_US
dc.identifier.citedreferenceBrunson, K.L. et al. 2001. Neurobiology of the stress response early in life: evolution of a concept and the role of corticotropin releasing hormone. Mol. Psychiatr. 6: 647 – 656.en_US
dc.identifier.citedreferenceZiegler, D.R. & J.P. Herman. 2002. Neurocircuitry of stress integration: anatomical pathways regulating the hypothalamo-pituitary-adrenocortical axis of the rat. Integr. Comp. Biol. 42: 541 – 551.en_US
dc.identifier.citedreferenceKiss, A., M. Palkovits & G. Aguilera. 1996. Neural regulation of corticotropin releasing hormone (CRH) and CRH receptor mRNA in the hypothalamic paraventricular nucleus in the rat. J. Neuroendocrinol. 8: 103 – 112.en_US
dc.identifier.citedreferenceZiegler, D.R., W.A. Cass & J.P. Herman. 1999. Excitatory influence of the locus coeruleus in hypothalamic-pituitary-adrenocortical axis responses to stress. J. Neuroendocrinol. 11: 361 – 369.en_US
dc.identifier.citedreferenceTonon, M.C. et al. 1985. Immunohistochemical localization and radioimmunoassay of corticotropin-releasing factor in the forebrain and hypophysis of the frog Rana ridibunda. Neuroendocrinology 40: 109 – 119.en_US
dc.identifier.citedreferenceYao, M., F. Hu & R.J. Denver. 2008. Distribution and corticosteroid regulation of glucocorticoid receptor in the brain of Xenopus laevis. J. Comp. Neurol. 508: 967 – 982.en_US
dc.identifier.citedreferenceShepard, J.D. et al. 2005. Role of glucocorticoids and cAMP-mediated repression in limiting corticotropin-releasing hormone transcription during stress. J. Neurosci. 25: 4073 – 4081.en_US
dc.identifier.citedreferenceAguilera, G. et al. 2007. Negative regulation of corticotropin releasing factor expression and limitation of stress response. Stress 10: 153 – 161.en_US
dc.identifier.citedreferenceChen, Y.-Z. & J. Qiu. 1999. Pleiotropic signaling pathways in rapid, nongenomic action of glucocorticoid. Mol. Cell Biol. Res. Comm. 2: 145 – 149.en_US
dc.identifier.citedreferenceBorski, R.J. 2000. Nongenomic membrane actions of glucocorticoids in vertebrates. Trends Endocrinol. Metab. 11: 427 – 436.en_US
dc.identifier.citedreferenceNorman, A.W., M.T. Mizwicki & D.P.G. Norman. 2004. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nature Rev. Drug Discov. 3: 27 – 41.en_US
dc.identifier.citedreferenceWidmaier, E.P. & M.F. Dallman. 1984. The effects of corticotropin-releasing factor on adrenocorticotropin secretion from perifused pituitaries in vitro: rapid inhibition by glucocorticoids. Endocrinology 115: 2368 – 2374.en_US
dc.identifier.citedreferenceBilezikjian, L.M. & W.W. Vale. 1983. Glucocorticoids inhibit corticotropin-releasing factor-induced production of adenosine-3’,5’-monophosphate in cultured anterior pituitary cells. Endocrinology 113: 657 – 662.en_US
dc.identifier.citedreferenceIwasaki, Y. et al. 1997. Non-genomic mechanisms of glucocorticoid inhibition of adrenocorticotropin secretion: possible involvement of GTP-binding protein. Biochem. Biophys. Res. Commun. 235: 295 – 299.en_US
dc.identifier.citedreferenceHinz, B. & R. Hirschelmann. 2000. Rapid non-genomic feedback effects of glucocorticoids on CRF-induced ACTH secretion in rats. Pharm. Res. 17: 1273 – 1277.en_US
dc.identifier.citedreferenceSuda, T. et al. 1985. In vitro study of immunoreactive corticotropin-releasing factor release from the rat hypothalamus. Life Sci. 37: 1499 – 1505.en_US
dc.identifier.citedreferenceWiegert, O., M. Joels & H. Krugers. 2006. Timing is essential for rapid effects of corticosterone on synaptic potentiation in the mouse hippocampus. Learn. Mem. 13: 110 – 113.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.