Show simple item record

N-mediated transcription antitermination in lambdoid phage H-19B is characterized by alternative NUT RNA structures and a reduced requirement for host factors

dc.contributor.authorNeely, Melody N.en_US
dc.contributor.authorFriedman, David I.en_US
dc.date.accessioned2010-06-01T21:19:48Z
dc.date.available2010-06-01T21:19:48Z
dc.date.issued2000-12en_US
dc.identifier.citationNeely, Melody N.; Friedman, David I. (2000). "N-mediated transcription antitermination in lambdoid phage H-19B is characterized by alternative NUT RNA structures and a reduced requirement for host factors." Molecular Microbiology 38(5): 1074-1085. <http://hdl.handle.net/2027.42/74398>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74398
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11123680&dopt=citationen_US
dc.format.extent437553 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsBlackwell Science Ltden_US
dc.titleN-mediated transcription antitermination in lambdoid phage H-19B is characterized by alternative NUT RNA structures and a reduced requirement for host factorsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid11123680en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74398/1/j.1365-2958.2000.02217.x.pdf
dc.identifier.doi10.1046/j.1365-2958.2000.02217.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceBarik, S., Ghosh, B., Whalen, W., Lazinski, D. & Das, A. ( 1987 ) An antitermination protein engages the elongating transcription apparatus at a promoter-proximal recognition site. Cell 50: 885 – 899.en_US
dc.identifier.citedreferenceBear, S.E., Court, D.L. & Friedman, D.I. ( 1984 ) An accessory role for Escherichia coli integration host factor: characterization of a lambda mutant dependent upon integration host factor for DNA packaging. J Virol 52: 966 – 972.en_US
dc.identifier.citedreferenceCai, Z., Gorin, A., Frederick, R., Ye, X., Hu, W. & Majumdar, A., et al. ( 1998 ) Solution structure of P22 transcriptional antitermination N peptide-boxB RNA complex. Nature Struct Biol 5: 203 – 212.en_US
dc.identifier.citedreferenceChattopadhyay, S., Garcia-Mena, J., DeVito, J., Wolska, K. & Das, A. ( 1995 ) Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda. Proc Natl Acad Sci USA 92: 4061 – 4065.en_US
dc.identifier.citedreferenceCheng, S.C., Court, D.L. & Friedman, D.I. ( 1995 ) Transcription termination signals in the nin region of bacteriophage lambda: Identification of Rho-dependent termination regions. Genetics 140: 875 – 887.en_US
dc.identifier.citedreferenceChurchward, G., Belin, D. & Nagamine, Y. ( 1984 ) A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene 31: 165 – 171.en_US
dc.identifier.citedreferenceCilley, C.D. & Williamson, J.R. ( 1997 ) Analysis of bacteriophage N protein and peptide binding to boxB RNA using polyacrylamide gel coelectrophoresis (PACE). RNA 3: 57 – 67.en_US
dc.identifier.citedreferenceCourt, D. & Sato, K. ( 1969 ) Studies of novel transducing variants of lambda: dispensability of genes N and Q. Virology 39: 348 – 352.en_US
dc.identifier.citedreferenceCourt, D.L., Patterson, T.A., Baker, N., Costantino, N., Mao, C. & Friedman, D.I. ( 1995 ) Structural and functional analysis of the transcription–translation proteins NusB and NusE. J Bacteriol 177: 2589 – 2591.en_US
dc.identifier.citedreferenceCraven, M.G. & Friedman, D.I. ( 1991 ) Analysis of the Escherichia coli nusA10 (Cs) allele: relating nucleotide changes to phenotypes. J Bacteriol 173: 1485 – 1491.en_US
dc.identifier.citedreferenceDas, A. ( 1992 ) How the phage lambda N gene product suppresses transcription termination: communication of RNA polymerase with regulatory proteins mediated by signals in nascent RNA. J Bacteriol 174: 6711 – 6716.en_US
dc.identifier.citedreferenceDas, A. & Wolska, K. ( 1984 ) Transcription antitermination in vitro by lambda N gene product: requirement for a phage nut site and the products of host nusA, nusB, and nusE genes. Cell 38: 165 – 173.en_US
dc.identifier.citedreferenceDevereux, J., Haeberli, P. & Smithies, O. ( 1984 ) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387 – 395.en_US
dc.identifier.citedreferenceDeVito, J. & Das, A. ( 1994 ) Control of transcription processivity in phage lambda: Nus factors strengthen the termination-resistant state of RNA polymerase induced by N antiterminator. Proc Natl Acad Sci USA 91: 8660 – 8664.en_US
dc.identifier.citedreferenceDoelling, J.H. & Franklin, N.C. ( 1989 ) Effects of all single base substitutions in the loop of boxB on antitermination of transcription by bacteriophage lambda's N protein. Nucleic Acids Res 17: 5565 – 5577.en_US
dc.identifier.citedreferenceEbright, R.H. & Busby, S. ( 1995 ) The Escherichia coli RNA polymerase α subunit: structure and function. Curr Opin Genet Dev 5: 197 – 203.en_US
dc.identifier.citedreferenceFiandt, M., Hradecna, Z., Lozeron, H.A. & Szybalski, W. ( 1971 ) Electron micrographic mapping of deletions, insertions, inversions, and homologies in the DNAs of coliphages lambda and phi 80. In The Bacteriophage Lambda. Hershey, A.D. (ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 339 – 354.en_US
dc.identifier.citedreferenceFranklin, N.C. ( 1985 ) Conservation of genome form but not sequence in the transcription antitermination determinants of bacteriophages lambda, phi 21 and P22. J Mol Biol 181: 75 – 84.en_US
dc.identifier.citedreferenceFriedman, D.I. ( 1992 ) Interaction between bacteriophage lambda and its Escherichia coli host. Curr Opin Genet Dev 2: 727 – 738.en_US
dc.identifier.citedreferenceFriedman, D.I. & Court, D.L. ( 1995 ) Transcription antitermination: the lambda paradigm updated. Mol Microbiol 18: 191 – 200.en_US
dc.identifier.citedreferenceFriedman, D.I. & Gottesman, M. ( 1983 ) Lytic mode of lambda development. In Lambda II. Hendrix, R.W., Roberts, J.W., Stahl, F.W., and Weisberg, R.A. (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 21 – 51.en_US
dc.identifier.citedreferenceFriedman, D.I., Olson, E.R., Georgopoulos, C., Tilly, K., Herskowitz, I. & Banuett, F. ( 1984 ) Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda. Microbiol Rev 48: 299 – 325.en_US
dc.identifier.citedreferenceFriedman, D.I., Olson, E.R., Johnson, L.L., Alessi, D. & Craven, M.G. ( 1990 ) Transcription-dependent competition for a host factor: the function and optimal sequence of the phage lambda.en_US
dc.identifier.citedreferenceGreenblatt, J., Nodwell, J.R. & Mason, S.W. ( 1993 ) Transcriptional antitermination. Nature 364: 401 – 406.en_US
dc.identifier.citedreferenceHasan, N. & Szybalski, W. ( 1986 ) Boundaries of the nutL antiterminator of coliphage lambda and effects of mutations in the spacer region between boxA and boxB. Gene 50: 87 – 96.en_US
dc.identifier.citedreferenceHilliker, S. & Botstein, D. ( 1975 ) An early regulatory gene of Salmonella phage P22 analogous to gene N of coliphage lambda. Virology 68: 510 – 524.en_US
dc.identifier.citedreferenceHorton, R.M., Cai, Z.L., Ho, S.N. & Pease, L.R. ( 1990 ) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8: 528 – 535.en_US
dc.identifier.citedreferenceHorwitz, R.J., Li, J. & Greenblatt, J. ( 1987 ) An elongation control particle containing the N gene transcriptional antitermination protein of bacteriophage lambda. Cell 51: 631 – 641.en_US
dc.identifier.citedreferenceHuang, A., Friesen, J. & Brunton, J.L. ( 1987 ) Characterization of a bacteriophage that carries the genes for production of Shiga-like toxin I in Escherichia coli. J Bacteriol 169: 4308 – 4312.en_US
dc.identifier.citedreferenceJuhala, R.J., Ford, M.E., Duda, R.L., Youlton, A., Hatfull, G.F. & Hendrix, R.W. ( 2000 ) Genomic sequences of bacteriophages HK97 and HK022: Pervasive mosaicism in the Lambdoid phages. J Mol Biol 299: 27 – 51.en_US
dc.identifier.citedreferenceKing, R.A., Banik-Maiti, S., Jin, D.J. & Weisberg, R.A. ( 1996 ) Transcripts that increase the processivity and elongation rate of RNA polymerase. Cell 87: 893 – 903.en_US
dc.identifier.citedreferenceLazinski, D., Grzadzielska, E. & Das, A. ( 1989 ) Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 59: 207 – 218.en_US
dc.identifier.citedreferenceLegault, P., Li, J., Mogridge, J., Kay, L.E. & Greenblatt, J. ( 1998 ) NMR structure of the bacteriophage lambda N peptide/boxB RNA complex: recognition of a GNRA fold by an arginine-rich motif. Cell 93: 289 – 299.en_US
dc.identifier.citedreferenceLinn, T. & St. Pierre, R. ( 1990 ) Improved vector system for constructing transcriptional fusions that ensures independent translation of lacZ. J Bacteriol 172: 1077 – 1084.en_US
dc.identifier.citedreferenceMason, S.W. & Greenblatt, J. ( 1991 ) Assembly of transcription elongation complexes containing the N protein of phage lambda and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Genes Dev 5: 1504 – 1512.en_US
dc.identifier.citedreferenceMason, S.W., Li, J. & Greenblatt, J. ( 1992 ) Direct interaction between two Escherichia coli transcription antitermination factors, NusB and ribosomal protein S10. J Mol Biol 223: 55 – 66.en_US
dc.identifier.citedreferenceMiller, H.I. & Friedman, D.I. ( 1980 ) An E. coli gene product required for lambda site-specific recombination. Cell 20: 711 – 719.en_US
dc.identifier.citedreferenceMiller, J.H. ( 1992 ). A Short Course in Bacterial Genetics: a Laboratory Manual for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.en_US
dc.identifier.citedreferenceMogridge, J., Mah, T.-F. & Greenblatt, J. ( 1995 ) A protein–RNA interaction network facilitates the template-independent cooperative assembly on RNA polymerase of a stable antitermination complex containing the λ N protein. Genes Dev 9: 2831 – 2844.en_US
dc.identifier.citedreferenceMogridge, J., Mah, T.F. & Greenblatt, J. ( 1998 ) Involvement of boxA nucleotides in the formation of a stable ribonucleoprotein complex containing the bacteriophage lambda N protein NMR structure of the bacteriophage lambda N peptide/boxB RNA complex: recognition of a GNRA fold by an arginine-rich motif. J Biol Chem 93: 289 – 299.en_US
dc.identifier.citedreferenceMonod, J., Cohen-Bazire, G. & Cohn, M. ( 1951 ) Sur la Biosynthese de la β-galactosidase (lactase) chez Escherichia coli. La specificite de l'induction. Biochim Biophys Acta 7: 585 – 599.en_US
dc.identifier.citedreferenceNeely, M.N. & Friedman, D.I. ( 1998a ) Arrangement and functional identification of genes in the regulatory region of lambdoid phage H-19B, a carrier of a Shiga-like toxin. Gene 223: 105 – 113.en_US
dc.identifier.citedreferenceNeely, M.N. & Friedman, D.I. ( 1998b ) Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol Microbiol 28: 1255 – 1267.en_US
dc.identifier.citedreferenceNodwell, J.R. & Greenblatt, J. ( 1991 ) The nut site of bacteriophage lambda is made of RNA and is bound by transcription antitermination factors on the surface of RNA polymerase. Genes Dev 5: 2141 – 2151.en_US
dc.identifier.citedreferenceNodwell, J.R. & Greenblatt, J. ( 1993 ) Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10. Cell 72: 261 – 268.en_US
dc.identifier.citedreferenceO'Brien, A.D., Newland, J.W., Miller, S.F., Holmes, R.K., Smith, H.W. & Formal, S.B. ( 1984 ) Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226: 694 – 696.en_US
dc.identifier.citedreferenceOlson, E.R., Flamm, E.L. & Friedman, D.I. ( 1982 ) Analysis of nutR: a region of phage lambda required for antitermination of transcription. Cell 31: 61 – 70.en_US
dc.identifier.citedreferenceOlson, E.R., Tomich, C.S. & Friedman, D.I. ( 1984 ) The nusA recognition site. Alteration in its sequence or position relative to upstream translation interferes with the action of the N antitermination function of phage lambda. J Mol Biol 180: 1053 – 1063.en_US
dc.identifier.citedreferencePatterson, T.A., Zhang, Z., Baker, T., Johnson, L.L., Friedman, D.I. & Court, D.L. ( 1994 ) Bacteriophage lambda N-dependent transcription antitermination. Competition for an RNA site may regulate antitermination. J Mol Biol 236: 217 – 228.en_US
dc.identifier.citedreferencePlunkett 3rd, G., Rose, D.J., Durfee, T.J. & Blattner, F.R. ( 1999 ) Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157: H7: Shiga toxin as a phage late-gene product. J Bacteriol 181: 1767 – 1778.en_US
dc.identifier.citedreferenceRees, W.A., Weitzel, S.E., Yager, T.D., Das, A. & von Hippel, P.H. ( 1996 ) Bacteriophage lambda N protein alone can induce transcription antitermination in vitro. Proc Natl Acad Sci USA 93: 342 – 346.en_US
dc.identifier.citedreferenceRobledo, R., Gottesman, M.E. & Weisberg, R.A. ( 1990 ) λ nutR mutations convert HKO22 Nun protein from a transcription termination factor to a suppressor of termination. J Mol Biol 212: 635 – 643.en_US
dc.identifier.citedreferenceRosenberg, M., Court, D., Shimatake, H., Brady, C. & Wulff, D.L. ( 1978 ) The relationship between function and DNA sequence in an intercistronic regulatory region in phage lambda. Nature 272: 414 – 423.en_US
dc.identifier.citedreferenceRusso, F.D. & Silhavy, T.J. ( 1992 ) Alpha: the Cinderella subunit of RNA polymerase. J Biol Chem 267: 14515 – 14518.en_US
dc.identifier.citedreferenceSaito, M., Tsugawa, A., Egawa, K. & Nakamura, Y. ( 1986 ) Revised sequence of the nusA gene of Escherichia coli and identification of nusA11 ( ts ) and nusA1 mutations which cause changes in a hydrophobic amino acid cluster. Mol Gen Genet 205: 380 – 382.en_US
dc.identifier.citedreferenceSalstrom, J.S. & Szybalski, W. ( 1978 ) Coliphage lambda nutL −: a unique class of mutants defective in the site of gene N product utilization for antitermination of leftward transcription. J Mol Biol 124: 195 – 221.en_US
dc.identifier.citedreferenceSchauer, A.T., Cheng, S.C., Zheng, C., St. Pierre, L., Alessi, D. & Hidayetoglu, D.L., et al. ( 1996 ) The alpha subunit of RNA polymerase and transcription antitermination. Mol Microbiol 21: 839 – 851.en_US
dc.identifier.citedreferenceScotland, S.M., Smith, H.R., Willshaw, G.A. & Rowe, B. ( 1983 ) Vero cytotoxin production in strain of Escherichia coli is determined by genes carried on bacteriophage. Lancet 2: 216.en_US
dc.identifier.citedreferenceSu, L., Radek, J.T., Labeots, L.A., Hallenga, K., Hermanto, P. & Chen, H., et al. ( 1997 ) An RNA enhancer in a phage transcriptional antitermination complex functions as a structural switch. Genes Dev 11: 2214 – 2226.en_US
dc.identifier.citedreferenceTaura, T., Ueguchi, C., Shiba, K. & Ito, K. ( 1992 ) Insertional disruption of the nusB ( ssyB ) gene leads to cold-sensitive growth of Escherichia coli and suppression of the secY24 mutation. Mol Gen Genet 234: 429 – 432.en_US
dc.identifier.citedreferenceWarren, F. & Das, A. ( 1984 ) Formation of termination-resistant transcription complex at phage lambda nut locus: effects of altered translation and a ribosomal mutation. Proc Natl Acad Sci USA 81: 3612 – 3616.en_US
dc.identifier.citedreferenceWeisberg, R.A. & Gottesman, M.E. ( 1999 ) Processive antitermination. J Bacteriol 181: 359 – 367.en_US
dc.identifier.citedreferenceWhalen, W., Ghosh, B. & Das, A. ( 1988 ) NusA protein is necessary and sufficient in vitro for phage lambda N gene product to suppress a rho-independent terminator placed downstream of nutL. Proc Natl Acad Sci USA 85: 2494 – 2498.en_US
dc.identifier.citedreferenceWilson, H.R., Kameyama, L., Zhou, J.G., Guarneros, G. & Court, D.L. ( 1997 ) Translational repression by a transcriptional elongation factor. Genes Dev 11: 2204 – 2213.en_US
dc.identifier.citedreferenceZuber, M., Patterson, T.A. & Court, D.L. ( 1987 ) Analysis of nutR, a site required for transcription antitermination in phage lambda. Proc Natl Acad Sci USA 84: 4514 – 4518.en_US
dc.identifier.citedreferenceZuker, M. ( 1989 ) Computer prediction of RNA structure. Methods Enzymol 180: 262 – 288.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.