Show simple item record

Microsphere embolism-induced cortical cholinergic deafferentation and impairments in attentional performance

dc.contributor.authorCraft, Tara K. S.en_US
dc.contributor.authorMahoney, John H.en_US
dc.contributor.authorDeVries, A. Courtneyen_US
dc.contributor.authorSarter, Martinen_US
dc.date.accessioned2010-06-01T21:22:21Z
dc.date.available2010-06-01T21:22:21Z
dc.date.issued2005-06en_US
dc.identifier.citationCraft, Tara K. S.; Mahoney, John H.; DeVries, A. Courtney; Sarter, Martin (2005). "Microsphere embolism-induced cortical cholinergic deafferentation and impairments in attentional performance." European Journal of Neuroscience 21(11): 3117-3132. <http://hdl.handle.net/2027.42/74436>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74436
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15978021&dopt=citationen_US
dc.description.abstractIschemic events have been hypothesized to play a critical role on the pathogenesis of dementia and the acceleration of cognitive impairments. This experiment was designed to determine the consequences of microvascular ischemia on the cortical cholinergic input system and associated attention capacities. Injections of microspheres (≈50 µm diameter; ≈5000 microspheres/100 µL) into the right common carotid artery of rats served as a model of microvascular ischemia and resulted in decreases in the density of cholinergic fibers in the ipsilateral medial prefrontal cortex and frontoparietal areas. Furthermore, dense astrogliosis, indicated by glial fibrillary acidic protein (GFAP) immunohistochemistry, was observed in the globus pallidus, including the areas of origin of cholinergic projections to the cortex. Fluoro-Jade B staining indicated that loss of neurons in the cortex was restricted to areas of microsphere-induced infarcts. Attentional performance was assessed using an operant sustained attention task; performance in this task was previously demonstrated to reflect the integrity and activity of the cortical cholinergic input system. Embolized animals' performance was characterized by a decrease in the animals' ability to detect signals. Their performance in non-signal trials remained unaffected. The residual density of cholinergic axons in prefrontal and frontoparietal areas correlated with the animals' performance. The present data support the hypothesis that microvascular ischemia results in loss of cortical cholinergic inputs and impairs associated attentional performance. Microsphere embolism represents a useful animal model for studying the role of interactions between microvascular disorder and impaired forebrain cholinergic neurotransmission in the manifestation of cognitive impairments.en_US
dc.format.extent1524049 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 Federation of European Neuroscience Societiesen_US
dc.subject.otherAcetylcholineen_US
dc.subject.otherAttentionen_US
dc.subject.otherCortexen_US
dc.subject.otherIschemiaen_US
dc.subject.otherMicrosphere Embolismen_US
dc.subject.otherStrokeen_US
dc.titleMicrosphere embolism-induced cortical cholinergic deafferentation and impairments in attentional performanceen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Psychology, University of Michigan, 525 E. University Ave, 4032 East Hall, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartments of Psychology and Neuroscience, Ohio State University, Ohio, USAen_US
dc.contributor.affiliationotherDepartment of Psychology, University of Colorado, Colorado, USAen_US
dc.identifier.pmid15978021en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74436/1/j.1460-9568.2005.04136.x.pdf
dc.identifier.doi10.1111/j.1460-9568.2005.04136.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceAlkayed, N. J., Harukuni, I., Kimes, A. S., London, E. D., Traystman, R. J. & Hurn, P. D. ( 1998 ) Gender-linked brain injury in experimental stroke. Stroke, 29, 159 – 165.en_US
dc.identifier.citedreferenceAndo, T., Takagi, N., Takagi, K., Kago, T. & Takeo, S. ( 2005 ) Effects of nefiracetam on the levels of brain-derived neurotrophic factor and synapsin I mRNA and protein in the hippocampus of microsphere-embolized rats. Eur. J. Pharmacol., 507, 49 – 56.en_US
dc.identifier.citedreferenceApparsundaram, S., Martinez, V., Parikh, V., Kozak, R. & Sarter, M. ( 2005 ) Increased capacity and density of choline transporters situated in synaptic membranes of the right medial prefrontal cortex of attentional task-performing rats. J. Neurosci., 25, 3851 – 3856.en_US
dc.identifier.citedreferenceArnold, H. M., Burk, J. A., Hodgson, E. M., Sarter, M. & Bruno, J. P. ( 2002 ) Differential cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention. Neuroscience, 114, 451 – 460.en_US
dc.identifier.citedreferenceBallard, C., McKeith, I., O'Brien, J., Kalaria, R., Jaros, E., Ince, P. & Perry, R. ( 2000 ) Neuropathological substrates of dementia and depression in vascular dementia, with a particular focus on cases with small infarct volumes. Dement. Geriatr. Cogn. Disord., 11, 59 – 65.en_US
dc.identifier.citedreferenceBarbelivien, A., Bertrand, N., Besret, L., Beley, A., MacKenzie, E. T. & Dauphin, F. ( 1999 ) Neurochemical stimulation of the rat substantia innominata increases cerebral blood flow (but not glucose use) through the parallel activation of cholinergic and non-cholinergic pathways. Brain Res., 840, 115 – 124.en_US
dc.identifier.citedreferenceBarbelivien, A., Vaussy, C., Marchalant, Y., Maubert, E., Bertrand, N., Beley, A., Roussel, S., Mackenzie, E. T. & Dauphin, F. ( 2004 ) Degeneration of the basalocortical pathway from the cortex induces a functional increase in galaninergic markers in the nucleus basalis magnocellularis of the rat. J. Cereb. Blood Flow Metab., 24, 1255 – 1266.en_US
dc.identifier.citedreferenceBevan, J. A., Buga, G. M., Florence, V. M., Gonsalves, A. & Snowden, A. ( 1982 ) Distribution of choline acetyltransferase in cerebral and extracerebral cranial arteries of the cat. Its relationship to neurogenic atropine-sensitive dilation. Circ. Res., 50, 470 – 476.en_US
dc.identifier.citedreferenceBiesold, D., Inanami, O., Sato, A. & Sato, Y. ( 1989 ) Stimulation of the nucleus basalis of Meynert increases cerebral cortical blood flow in rats. Neurosci. Lett., 98, 39 – 44.en_US
dc.identifier.citedreferenceBurk, J. A., Herzog, C. D., Porter, M. C. & Sarter, M. ( 2002 ) Interactions between aging and cortical cholinergic deafferentation on attention. Neurobiol. Aging, 23, 467 – 477.en_US
dc.identifier.citedreferenceBurk, J. A. & Sarter, M. ( 2001 ) Dissociation between the attentional functions mediated via basal forebrain cholinergic and GABAergic neurons. Neuroscience, 105, 899 – 909.en_US
dc.identifier.citedreferenceBushnell, P. J., Chiba, A. A. & Oshiro, W. M. ( 1998 ) Effects of unilateral removal of basal forebrain cholinergic neurons on cued target detection in rats. Behav. Brain Res., 90, 57 – 71.en_US
dc.identifier.citedreferenceChu, Y., Cochran, E. J., Bennett, D. A., Mufson, E. J. & Kordower, J. H. ( 2001 ) Down-regulation of trkA mRNA within nucleus basalis neurons in individuals with mild cognitive impairment and Alzheimer's disease. J. Comp. Neurol., 437, 296 – 307.en_US
dc.identifier.citedreferenceDate, I., Takagi, N., Takagi, K., Kago, T., Matsumoto, K., Nakamura, T. & Takeo, S. ( 2004a ) Hepatocyte growth factor attenuates cerebral ischemia-induced learning dysfunction. Biochem. Biophys. Res. Commun., 319, 1152 – 1158.en_US
dc.identifier.citedreferenceDate, I., Takagi, N., Takagi, K., Kago, T., Matsumoto, K., Nakamura, T. & Takeo, S. ( 2004b ) Hepatocyte growth factor improved learning and memory dysfunction of microsphere-embolized rats. J. Neurosci. Res., 78, 442 – 453en_US
dc.identifier.citedreferencede la Torre, J. C. & Stefano, G. B. ( 2000 ) Evidence that Alzheimer's disease is a microvascular disorder: the role of constitutive nitric oxide. Brain Res. Rev., 34, 119 – 136.en_US
dc.identifier.citedreferenceDihne, M., Grommes, C., Lutzenburg, M., Witte, O. W. & Block, F. ( 2002 ) Different mechanisms of secondary neuronal damage in thalamic nuclei after focal cerebral ischemia in rats. Stroke, 33, 3006 – 3011.en_US
dc.identifier.citedreferenceEveritt, B. J. & Robbins, T. W. ( 1997 ) Central cholinergic systems and cognition. Annu. Rev. Psychol., 48, 649 – 684.en_US
dc.identifier.citedreferenceFadel, J., Moore, H., Sarter, M. & Bruno, J. P. ( 1996 ) Trans-synaptic stimulation of cortical acetylcholine release after partial 192 IgG-saporin-induced loss of cortical cholinergic afferents. J. Neurosci., 16, 6592 – 6600.en_US
dc.identifier.citedreferenceFarkas, E. & Luiten, P. G. ( 2001 ) Cerebral microvascular pathology in aging and Alzheimer's disease. Prog. Neurobiol., 64, 575 – 611.en_US
dc.identifier.citedreferenceFigueiredo, B. C., Piccardo, P., Maysinger, D., Clarke, P. B. & Cuello, A. C. ( 1993 ) Effects of acidic fibroblast growth factor on cholinergic neurons of nucleus basalis magnocellularis and in a spatial memory task following cortical devascularization. Neuroscience, 56, 955 – 963.en_US
dc.identifier.citedreferenceFukatsu, T., Miyake-Takagi, K., Nagakura, A., Omino, K., Okuyama, N., Ando, T., Takagi, N., Furuya, Y. & Takeo, S. ( 2002 ) Effects of nefiracetam on spatial memory function and acetylcholine and GABA metabolism in microsphere-embolized rats. Eur. J. Pharmacol., 453, 59 – 67.en_US
dc.identifier.citedreferenceGeula, C. ( 1998 ) Abnormalities of neural circuitry in Alzheimer's disease: hippocampus and cortical cholinergic innervation. Neurology, 51, S18 – S29.en_US
dc.identifier.citedreferenceGharbawie, O. A. & Whishaw, I. Q. ( 2003 ) Cholinergic and serotonergic neocortical projection lesions given singly or in combination cause only mild impairments on tests of skilled movement in rats: evaluation of a model of dementia. Brain Res., 970, 97 – 109.en_US
dc.identifier.citedreferenceGill, T. M., Sarter, M. & Givens, B. ( 2000 ) Sustained visual attention performance-associated prefrontal neuronal activity: evidence for cholinergic modulation. J. Neurosci., 20, 4745 – 4757.en_US
dc.identifier.citedreferenceGutierrez, H., Miranda, M. I. & Bermudez-Rattoni, F. ( 1997 ) Learning impairment and cholinergic deafferentation after cortical nerve growth factor deprivation. J. Neurosci., 17, 3796 – 3803.en_US
dc.identifier.citedreferenceHaga, S., Haga, C., Aizawa, T. & Ikeda, K. ( 2002 ) Neuronal degeneration and glial cell-responses following trimethyltin intoxication in the rat. Acta Neuropathol., 103, 575 – 582.en_US
dc.identifier.citedreferenceHarkany, T., Penke, B. & Luiten, P. G. ( 2000 ) beta-Amyloid excitotoxicity in rat magnocellular nucleus basalis. Effect of cortical deafferentation on cerebral blood flow regulation and implications for Alzheimer's disease. Ann. N. Y. Acad. Sci., 903, 374 – 386.en_US
dc.identifier.citedreferenceHartig, W., Bauer, A., Brauer, K., Grosche, J., Hortobagyi, T., Penke, B., Schliebs, R. & Harkany, T. ( 2002 ) Functional recovery of cholinergic basal forebrain neurons under disease conditions: old problems, new solutions? Rev. Neurosci., 13, 95 – 165.en_US
dc.identifier.citedreferenceHolley, L. A., Turchi, J., Apple, C. & Sarter, M. ( 1995 ) Dissociation between the attentional effects of infusions of a benzodiazepine receptor agonist and an inverse agonist into the basal forebrain. Psychopharmacology, 120, 99 – 108.en_US
dc.identifier.citedreferenceHopkins, K. J., Wang, G. & Schmued, L. C. ( 2000 ) Temporal progression of kainic acid induced neuronal and myelin degeneration in the rat forebrain. Brain Res., 864, 69 – 80.en_US
dc.identifier.citedreferenceHsieh, C. Y., Cruikshank, S. J. & Metherate, R. ( 2000 ) Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist. Brain Res., 880, 51 – 64.en_US
dc.identifier.citedreferenceKalaria, R. ( 2002 ) Similarities between Alzheimer's disease and vascular dementia. J. Neurol. Sci., 203–204, 29 – 34.en_US
dc.identifier.citedreferenceKataoka, K., Hayakawa, T., Kuroda, R., Yuguchi, T. & Yamada, K. ( 1991 ) Cholinergic deafferentation after focal cerebral infarct in rats. Stroke, 22, 1291 – 1296.en_US
dc.identifier.citedreferenceKnox, C. A. & Oliveira, A. ( 1980 ) Brain aging in normotensive and hypertensive strains of rats. III. A quantitative study of cerebrovasculature. Acta Neuropathol., 52, 17 – 25.en_US
dc.identifier.citedreferenceLacombe, P., Sercombe, R., Verrecchia, C., Philipson, V., MacKenzie, E. T. & Seylaz, J. ( 1989 ) Cortical blood flow increases induced by stimulation of the substantia innominata in the unanesthetized rat. Brain Res., 491, 1 – 14.en_US
dc.identifier.citedreferenceLanga, K. M., Foster, N. L. & Larson, E. B. ( 2004 ) Mixed dementia: emerging concepts and therapeutic implications. JAMA, 292, 2901 – 2908.en_US
dc.identifier.citedreferenceLehericy, S., Hirsch, E. C., Cervera-Pierot, P., Hersh, L. B., Bakchine, S., Piette, F., Duyckaerts, C., Hauw, J. J., Javoy-Agid, F. & Agid, Y. ( 1993 ) Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer's disease. J. Comp. Neurol., 330, 15 – 31.en_US
dc.identifier.citedreferenceLiberini, P., Pioro, E. P., Maysinger, D. & Cuello, A. C. ( 1994 ) Neocortical infarction in subhuman primates leads to restricted morphological damage of the cholinergic neurons in the nucleus basalis of Meynert. Brain Res., 648, 1 – 8.en_US
dc.identifier.citedreferenceLinville, D. G. & Arneric, S. P. ( 1991 ) Cortical cerebral blood flow governed by the basal forebrain: age-related impairments. Neurobiol. Aging, 12, 503 – 510.en_US
dc.identifier.citedreferenceLinville, D. G., Williams, S. & Arneric, S. P. ( 1993 ) Basal forebrain control of cortical cerebral blood flow is independent of local cortical neurons. Brain Res., 622, 26 – 34.en_US
dc.identifier.citedreferenceLuiten, P. G., de Jong, G. I., Van der Zee, E. A. & van Dijken, H. ( 1996 ) Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries. Brain Res., 720, 225 – 229.en_US
dc.identifier.citedreferenceLysakowski, A., Wainer, B. H., Bruce, G. & Hersh, L. B. ( 1989 ) An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex. Neuroscience, 28, 291 – 336.en_US
dc.identifier.citedreferenceMartinez, V. & Sarter, M. ( 2004 ) Lateralized attentional functions of cortical cholinergic inputs. Behav. Neurosci., 118, 984 – 991.en_US
dc.identifier.citedreferenceMcGaughy, J., Kaiser, T. & Sarter, M. ( 1996 ) Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: selectivity of the behavioral impairment and relation to cortical AChE-positive fiber density. Behav. Neurosci., 110, 247 – 265.en_US
dc.identifier.citedreferenceMcGaughy, J. & Sarter, M. ( 1995 ) Behavioral vigilance in rats: task validation and effects of age, amphetamine, and benzodiazepine receptor ligands. Psychopharmacology, 117, 340 – 357.en_US
dc.identifier.citedreferenceMcGaughy, J. & Sarter, M. ( 1998 ) Sustained attention performance in rats with intracortical infusions of 192 IgG-saporin-induced cortical cholinergic deafferentation: effects of physostigmine and FG 7142. Behav. Neurosci., 112, 1519 – 1525.en_US
dc.identifier.citedreferenceMesulam, M. ( 2004 ) The cholinergic lesion of Alzheimer's disease: pivotal factor or side show? Learn. Mem., 11, 43 – 49.en_US
dc.identifier.citedreferenceMetherate, R. & Weinberger, N. M. ( 1990 ) Cholinergic modulation of responses to single tones produces tone-specific receptive field alterations in cat auditory cortex. Synapse, 6, 133 – 145.en_US
dc.identifier.citedreferenceMeyer, J., Xu, G., Thornby, J., Chowdhury, M. & Quach, M. ( 2002 ) Longitudinal analysis of abnormal domains comprising mild cognitive impairment (MCI) during aging. J. Neurol. Sci., 201, 19 – 25.en_US
dc.identifier.citedreferenceMilner, T. A., Aoki, C., Sheu, K. F., Blass, J. P. & Pickel, V. M. ( 1987 ) Light microscopic immunocytochemical localization of pyruvate dehydrogenase complex in rat brain: topographical distribution and relation to cholinergic and catecholaminergic nuclei. J. Neurosci., 7, 3171 – 3190.en_US
dc.identifier.citedreferenceMiyake, K., Takeo, S. & Kaijihara, H. ( 1993 ) Sustained decrease in brain regional blood flow after microsphere embolism in rats. Stroke, 24, 415 – 420.en_US
dc.identifier.citedreferenceMontaldi, D., Brooks, D. N., McColl, J. H., Wyper, D., Patterson, J., Barron, E. & McCulloch, J. ( 1990 ) Measurements of regional cerebral blood flow and cognitive performance in Alzheimer's disease. J. Neurol. Neurosurg. Psychiary, 53, 33 – 38.en_US
dc.identifier.citedreferenceMufson, E. J., Ma, S. Y., Cochran, E. J., Bennett, D. A., Beckett, L. A., Jaffar, S., Saragovi, H. U. & Kordower, J. H. ( 2000 ) Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer's disease. J. Comp. Neurol., 427, 19 – 30.en_US
dc.identifier.citedreferenceMufson, E. J., Ma, S. Y., Dills, J., Cochran, E. J., Leurgans, S., Wuu, J., Bennett, D. A., Jaffar, S., Gilmor, M. L., Levey, A. I. & Kordower, J. H. ( 2002 ) Loss of basal forebrain P75 (NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer's disease. J. Comp. Neurol., 443, 136 – 153.en_US
dc.identifier.citedreferenceMurphy, P. C. & Sillito, A. M. ( 1991 ) Cholinergic enhancement of direction selectivity in the visual cortex of the cat. Neuroscience, 40, 13 – 20.en_US
dc.identifier.citedreferenceOldford, E. & Castro-Alamancos, M. A. ( 2003 ) Input-specific effects of acetylcholine on sensory and intracortical evoked responses in the ‘barrel cortex’ in vivo. Neuroscience, 117, 769 – 778.en_US
dc.identifier.citedreferenceOshiro, W. M., Bushnell, P. J. & Chiba, A. A. ( 2000 ) A comparison of the effects of bilateral and unilateral infusions of muscimol into the basal forebrain on cued detection of visual targets in rats. Behav. Neurosci., 114, 137 – 149.en_US
dc.identifier.citedreferencePalmer, A. M. ( 1996 ) Neurochemical studies of Alzheimer's disease. Neurodegeneration, 5, 381 – 391.en_US
dc.identifier.citedreferencePappas, B. A., Bayley, P. J., Bui, B. K., Hansen, L. A. & Thal, L. J. ( 2000 ) Choline acetyltransferase activity and cognitive domain scores of Alzheimer's patients. Neurobiol. Aging, 21, 11 – 17.en_US
dc.identifier.citedreferencePearson, R. C., Gatter, K. C. & Powell, T. P. ( 1983 ) Retrograde cell degeneration in the basal nucleus in monkey and man. Brain Res., 261, 321 – 326.en_US
dc.identifier.citedreferencePenschuck, S., Chen-Bee, C. H., Prakash, N. & Frostig, R. D. ( 2002 ) In vivo modulation of a cortical functional sensory representation shortly after topical cholinergic agent application. J. Comp. Neurol., 452, 38 – 50.en_US
dc.identifier.citedreferencePerry, E. K., Blessed, G., Tomlinson, B. E., Perry, R. H., Crow, T. J., Cross, A. J., Dockray, G. J., Dimaline, R. & Arregui, A. ( 1981 ) Neurochemical activities in human temporal lobe related to aging and Alzheimer-type changes. Neurobiol. Aging, 2, 251 – 256.en_US
dc.identifier.citedreferencePinard, E., Nallet, H., MacKenzie, E. T., Seylaz, J. & Roussel, S. ( 2002 ) Penumbral microcirculatory changes associated with peri-infarct depolarizations in the rat. Stroke, 33, 606 – 612.en_US
dc.identifier.citedreferenceProcter, A. W. ( 1996 ) Neurochemical correlates of dementia. Neurodegeneration, 5, 403 – 407.en_US
dc.identifier.citedreferenceRaszkiewicz, J. L., Linville, D. G., Kerwin, J. F. Jr, Wagenaar, F. & Arneric, S. P. ( 1992 ) Nitric oxide synthase is critical in mediating basal forebrain regulation of cortical cerebral circulation. J. Neurosci. Res., 33, 129 – 135.en_US
dc.identifier.citedreferenceReed, B. R. ( 2004 ) Vascular dementia. Arch. Neurol., 61, 433 – 435.en_US
dc.identifier.citedreferenceSarter, M. & Bruno, J. P. ( 2004 ) Developmental origins of the age-related decline in cortical cholinergic function and associated cognitive abilities. Neurobiol. Aging, 25, 1127 – 1139.en_US
dc.identifier.citedreferenceSarter, M., Givens, B. & Bruno, J. P. ( 2001 ) The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res. Rev., 35, 146 – 160.en_US
dc.identifier.citedreferenceSarter, M., Hasselmo, M. E., Bruno, J. P. & Givens, B. ( 2005 ) Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and top-down cholinergic modulation of signal detection. Brain Res. Rev., 48, 98 – 111.en_US
dc.identifier.citedreferenceSchallert, T., Fleming, S. M., Leasure, J. L., Tillerson, J. L. & Bland, S. T. ( 2000 ) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology, 39, 777 – 787.en_US
dc.identifier.citedreferenceSchmued, L. C. & Hopkins, K. J. ( 2000 ) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res., 874, 123 – 130.en_US
dc.identifier.citedreferenceSekiguchi, M., Sugiyama, Y., Takagi, K., Takagi, N., Takeo, S., Tanaka, O., Yamato, I., Torigoe, K. & Nowakowski, R. S. ( 2003 ) Rapid appearance of pathological changes of neurons and glia cells in the cerebellum of microsphere-embolized rats. Brain Res., 978, 228 – 232.en_US
dc.identifier.citedreferenceSekiguchi, M., Takagi, K., Takagi, N., Date, I., Takeo, S., Tanaka, O., Yamato, I., Kobashikawa, S., Torigoe, K. & Nowakowski, R. S. ( 2005 ) Time course and sequence of pathological changes in the cerebellum of microsphere-embolized rats. Exp. Neurol., 191, 266 – 275.en_US
dc.identifier.citedreferenceSeshadri, S., Beiser, A., Selhub, J., Jacques, P. F., Rosenberg, I. H., D'Agostino, R. B., Wilson, P. W. & Wolf, P. A. ( 2002 ) Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N. Engl. J. Med., 346, 476 – 483.en_US
dc.identifier.citedreferenceSims, N. R., Bowen, D. M., Allen, S. J., Smith, C. C., Neary, D., Thomas, D. J. & Davison, A. N. ( 1983 ) Presynaptic cholinergic dysfunction in patients with dementia. J. Neurochem., 40, 503 – 509.en_US
dc.identifier.citedreferenceSoblosky, J. S., Tabor, S. L., Matthews, M. A., Davidson, J. F., Chorney, D. A. & Carey, M. E. ( 1996 ) Reference memory and allocentric spatial localization deficits after unilateral cortical brain injury in the rat. Behav. Brain Res., 80, 185 – 194.en_US
dc.identifier.citedreferenceSofroniew, M. V., Galletly, N. P., Isacson, O. & Svendsen, C. N. ( 1990 ) Survival of adult basal forebrain cholinergic neurons after loss of target neurons. Science, 247, 338 – 342.en_US
dc.identifier.citedreferenceStichel, C. C. & Singer, W. ( 1987 ) Quantitative analysis of the choline acetyltransferase-immunoreactive axonal network in the cat primary visual cortex. I. Adult cats. J. Comp. Neurol., 258, 91 – 98.en_US
dc.identifier.citedreferenceSzutowicz, A., Tomaszewicz, M., Jankowska, A., Madziar, B. & Bielarczyk, H. ( 2000 ) Acetyl-CoA metabolism in cholinergic neurons and their susceptibility to neurotoxic inputs. Metab. Brain Dis., 15, 29 – 44.en_US
dc.identifier.citedreferenceTago, H., Kimura, H. & Maeda, T. ( 1986 ) Visualization of detailed acetylcholinesterase fiber and neuron staining in rat brain by a sensitive histochemical procedure. J. Histochem. Cytochem., 34, 1431 – 1438.en_US
dc.identifier.citedreferenceTakagi, N., Miyake, K., Taguchi, T., Sugita, N., Takagi, K., Tamada, H. & Takeo, S. ( 1997b ) Changes in cholinergic neurons and failure in learning function after microsphere embolism-induced cerebral ischemia. Brain Res. Bull., 43, 87 – 92.en_US
dc.identifier.citedreferenceTakagi, N., Miyake, K., Taguchi, T., Tamada, H., Takagi, K., Sugita, N. & Takeo, S. ( 1997a ) Failure in learning task and loss of cortical cholingergic fibers in microsphere-embolized rats. Exp. Brain Res., 114, 279 – 287.en_US
dc.identifier.citedreferenceTakagi, N., Miyake-Takagi, K., Takagi, K., Tamura, H. & Takeo, S. ( 2002 ) Altered extracellular signal-regulated kinase signal transduction by the muscarinic acetylcholine and metabotropic glutamate receptors after cerebral ischemia. J. Biol. Chem., 277, 6382 – 6390.en_US
dc.identifier.citedreferenceTakagi, N., Tsuru, H., Yamamura, M. & Takeo, S. ( 1995 ) Changes in striatal dopamine metabolism after microsphere embolism in rats. Stroke, 26, 1101 – 1106.en_US
dc.identifier.citedreferenceTakeo, S., Fukatsu, T., Miyake-Takagi, K., Takagi, N., Niimura, M., Nagakura, A., Ando, T. & Tanonaka, K. ( 2003 ) Persistent effects of delayed treatment with nefiracetam on the water maze task in rats with sustained cerebral ischemia. J. Pharmacol. Exp. Ther., 304, 513 – 523.en_US
dc.identifier.citedreferenceTakeo, S., Taguchi, T., Tanonaka, K., Miyake, K., Horiguchi, T., Takagi, N. & Fujimori, K. ( 1992 ) Sustained damage to energy metabolism of brain regions after microsphere embolism in rats. Stroke, 23, 62 – 68.en_US
dc.identifier.citedreferenceTerry, A. V. Jr & Buccafusco, J. J. ( 2003 ) The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther., 306, 821 – 827.en_US
dc.identifier.citedreferenceTong, X. K. & Hamel, E. ( 1999 ) Regional cholinergic denervation of cortical microvessels and nitric oxide synthase-containing neurons in Alzheimer's disease. Neuroscience, 92, 163 – 175.en_US
dc.identifier.citedreferenceTremblay, N., Warren, R. A. & Dykes, R. W. ( 1990 ) Electrophysiological studies of acetylcholine and the role of the basal forebrain in the somatosensory cortex of the cat. II. Cortical neurons excited by somatic stimuli. J. Neurophysiol., 64, 1212 – 1222.en_US
dc.identifier.citedreferenceTurchi, J. & Sarter, M. ( 2000 ) Cortical cholinergic inputs mediate processing capacity: effects of 192 IgG-saporin-induced lesions on olfactory span performance. Eur. J. Neurosci., 12, 4505 – 4514.en_US
dc.identifier.citedreferenceTurchi, J. & Sarter, M. ( 2001 ) Antisense oligodeoxynucleotide-induced suppression of basal forebrain NMDA-NR1 subunits selectively impairs visual attentional performance in rats. Eur. J. Neurosci., 14, 103 – 117.en_US
dc.identifier.citedreferenceVaucher, E., Borredon, J., Bonvento, G., Seylaz, J. & Lacombe, P. ( 1997b ) Autoradiographic evidence for flow-metabolism uncoupling during stimulation of the nucleus basalis of Meynert in the conscious rat. J. Cereb. Blood Flow Metab., 17, 686 – 694.en_US
dc.identifier.citedreferenceVaucher, E. & Hamel, E. ( 1995 ) Cholinergic basal forebrain neurons project to cortical microvessels in the rat: electron microscopic study with anterogradely transported Phaseolus vulgaris leucoagglutinin and choline acetyltransferase immunocytochemistry. J. Neurosci., 15, 7427 – 7441.en_US
dc.identifier.citedreferenceVaucher, E., Linville, D. & Hamel, E. ( 1997a ) Cholinergic basal forebrain projections to nitric oxide synthase-containing neurons in the rat cerebral cortex. Neuroscience, 79, 827 – 836.en_US
dc.identifier.citedreferenceWaite, J. J., Holschneider, D. P. & Scremin, O. U. ( 1999 ) Selective immunotoxin-induced cholinergic deafferentation alters blood flow distribution in the cerebral cortex. Brain Res., 818, 1 – 11.en_US
dc.identifier.citedreferenceWard, N. M., Sharkey, J. & Brown, V. J. ( 1997 ) Assessment of sensorimotor neglect after occlusion of the middle cerebral artery in the rat. Behav. Neurosci., 111, 1133 – 1145.en_US
dc.identifier.citedreferenceWard, N. M., Sharkey, J., Marston, H. M. & Brown, V. J. ( 1998 ) Simple and choice reaction-time performance following occlusion of the anterior cerebral arteries in the rat. Exp. Brain Res., 123, 269 – 281.en_US
dc.identifier.citedreferenceYamada, M., Lamping, K. G., Duttaroy, A., Zhang, W., Cui, Y., Bymaster, F. P., McKinzie, D. L., Felder, C. C., Deng, C. X., Faraci, F. M. & Wess, J. ( 2001 ) Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice. Proc. Natl Acad. Sci. USA, 98, 14096 – 14101.en_US
dc.identifier.citedreferenceZar, J. H. ( 1974 ) Biostatistical Analysis. Prentice Hall, Englewood Cliffs, N.J.en_US
dc.identifier.citedreferenceZekry, D., Duyckaerts, C., Belmin, J., Geoffre, C., Herrmann, F., Moulias, R. & Hauw, J. J. ( 2003 ) The vascular lesions in vascular and mixed dementia: the weight of functional neuroanatomy. Neurobiol. Aging, 24, 213 – 219.en_US
dc.identifier.citedreferenceZhang, F., Eckman, C., Younkin, S., Hsiao, K. K. & Iadecola, C. ( 1997 ) Increased susceptibility to ischemic brain damage in transgenic mice overexpressing the amyloid precursor protein. J. Neurosci., 17, 7655 – 7661.en_US
dc.identifier.citedreferenceZlokovic, B. V. ( 2002 ) Vascular disorder in Alzheimer's disease: role in pathogenesis of dementia and therapeutic targets. Adv. Drug Deliv. Rev., 54, 1553 – 1559.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.