Show simple item record

A New Model for the Evolution of Carnivory in the Bladderwort Plant (Utricularia) : Adaptive Changes in Cytochrome c Oxidase (COX) Provide Respiratory Power

dc.contributor.authorLaakkonen, L.en_US
dc.contributor.authorJobson, R. W.en_US
dc.contributor.authorAlbert, V. A.en_US
dc.date.accessioned2010-06-01T21:43:12Z
dc.date.available2010-06-01T21:43:12Z
dc.date.issued2006-11en_US
dc.identifier.citationLaakkonen, L.; Jobson, R. W.; Albert, V. A. (2006). "A New Model for the Evolution of Carnivory in the Bladderwort Plant (Utricularia) : Adaptive Changes in Cytochrome c Oxidase (COX) Provide Respiratory Power." Plant Biology 8(6): 758-764. <http://hdl.handle.net/2027.42/74764>en_US
dc.identifier.issn1435-8603en_US
dc.identifier.issn1438-8677en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74764
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17203431&dopt=citationen_US
dc.description.abstractThe evolution of carnivorous plants has been modeled as a selective tradeoff between photosynthetic costs and benefits in nutrient-poor habitats. Although possibly applicable for pitfall and flypaper trappers, more variables may be required for active trapping systems. Bladderwort (Utricularia) suction traps react to prey stimuli with an extremely rapid release of elastic instability. Trap setting requires considerable energy to engage an active ion transport process whereby water is pumped out through the thin bladder walls to create negative internal pressure. Accordingly, empirical estimates have shown that respiratory rates in bladders are far greater than in leafy structures. Cytochrome c oxidase (COX) is a multi-subunit enzyme that catalyzes the respiratory reduction of oxygen to water and couples this reaction to translocation of protons, generating a transmembrane electrochemical gradient that is used for the synthesis of adenosine triphosphate (ATP). We have previously demonstrated that two contiguous cysteine residues in helix 3 of COX subunit I (COX I) have evolved under positive Darwinian selection. This motif, absent in = 99.9 % of databased COX I proteins from eukaryotes, Archaea, and Bacteria, lies directly at the docking point of COX I helix 3 and cytochrome c . Modeling of bovine COX I suggests the possibility that a vicinal disulfide bridge at this position could cause premature helix termination. The helix 3–4 loop makes crucial contacts with the active site of COX, and we postulate that the C–C motif might cause a conformational change that decouples (or partly decouples) electron transport from proton pumping. Such decoupling would permit bladderworts to optimize power output (which equals energy times rate) during times of need, albeit with a 20 % reduction in overall energy efficiency of the respiratory chain. A new model for the evolution of bladderwort carnivory is proposed that includes respiration as an additional tradeoff parameter.en_US
dc.format.extent368748 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2006 Georg Thieme Verlag Stuttgart.New Yorken_US
dc.subject.otherBladderwortsen_US
dc.subject.otherCarnivorous Plantsen_US
dc.subject.otherCytochrome C Oxidaseen_US
dc.subject.otherConformational Changeen_US
dc.subject.otherCOXen_US
dc.subject.otherElectron Transporten_US
dc.subject.otherEnergeticsen_US
dc.subject.otherProtein Structureen_US
dc.subject.otherProton Pumpingen_US
dc.subject.otherRespirationen_US
dc.subject.otherUtriculariaen_US
dc.titleA New Model for the Evolution of Carnivory in the Bladderwort Plant (Utricularia) : Adaptive Changes in Cytochrome c Oxidase (COX) Provide Respiratory Poweren_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationotherHelsinki Bioenergetics Group, Programme for Structural Biology and Biophysics, Institute of Biotechnology, Biocenter 3 (Viikinkaari 1), PB 65, University of Helsinki, 00014 Helsinki, Finlanden_US
dc.contributor.affiliationotherDepartment of Ecology and Evolutionary Biology, 2052 Kraus Natural Science Bldg., 830 N. University, Ann Arbor, MI 48109-1048, USAen_US
dc.contributor.affiliationotherNatural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norwayen_US
dc.identifier.pmid17203431en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74764/1/s-2006-924459.pdf
dc.identifier.doi10.1055/s-2006-924459en_US
dc.identifier.sourcePlant Biologyen_US
dc.identifier.citedreferenceAbramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., Laakkonen, L., Puustinen, A., Iwata, S., Wikstrom, M. The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nature Structural Biology ( 2000 ) 7 910 – 917.en_US
dc.identifier.citedreferenceAdamec, L. Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa. Aquatic Botany ( 1997 ) 59 297 – 306.en_US
dc.identifier.citedreferenceAdamec, L. Respiration and photosynthesis of bladders and leaves of aquatic Utricularia species. Plant Biology ( 2006 ) 8 765 – 769.en_US
dc.identifier.citedreferenceAlbert, V. A., Williams, S. E., Chase, M. W. Carnivorous plants: phylogeny and structural evolution. Science ( 1992 ) 257 1491 – 1495.en_US
dc.identifier.citedreferenceBrooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, B. J., Swaminathan, S., Kaplus, M. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry ( 1983 ) 4 187 – 217.en_US
dc.identifier.citedreferenceBurke, P. V., Poyton, R. O. Structure/function of oxygen-regulated isoforms in cytochrome c oxidase. Journal of Experimental Biology ( 1998 ) 201 1163 – 1175.en_US
dc.identifier.citedreferenceEllison, A. M., Gotelli, N. J. Evolutionary ecology of carnivorous plants. Trends in Ecology and Evolution ( 2001 ) 16 623 – 629.en_US
dc.identifier.citedreferenceFerguson-Miller, S., Brautigan, D. L., Margoliash, E. Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. Journal of Biological Chemistry ( 1976 ) 251 1104 – 1115.en_US
dc.identifier.citedreferenceFineran, B. A., Lee, M. S. L. Organization of mature glands on the trap and other organs of the bladderwort Utricularia monanthos. Protoplasma ( 1980 ) 103 17 – 34.en_US
dc.identifier.citedreferenceFlÖck, D., Helms, V. Protein-protein docking of electron transfer complexes: cytochrome c oxidase and cytochrome c. Proteins ( 2002 ) 47 75 – 85.en_US
dc.identifier.citedreferenceForterre, Y., Skotheim, J. M., Dumais, J., Mahadevan, L. How the Venus flytrap snaps. Nature ( 2005 ) 433 421 – 425.en_US
dc.identifier.citedreferenceFriday, L. E. Measuring investment in carnivory: seasonal and individual variation in trap number and biomass in Utricularia vulgaris L. New Phytologist ( 1992 ) 121 439 – 445.en_US
dc.identifier.citedreferenceGivnish, T. J. Ecology and evolution of carnivorous plants. Abrahamson, W. G., ed. Plant-Animal Interactions New York McGraw-Hill ( 1989 ) 242 – 290.en_US
dc.identifier.citedreferenceGivnish, T. J., Burkhardt, E. L., Happel, R. E., Weintraub, J. D. Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist nutrient-poor habitats. American Naturalist ( 1984 ) 124 479 – 497.en_US
dc.identifier.citedreferenceGrossman, L. I., Schmidt, T. R., Wildman, D. E., Goodman, M. Molecular evolution of aerobic energy metabolism in primates. Molecular Phylogenetics and Evolution ( 2001 ) 18 26 – 36.en_US
dc.identifier.citedreferenceGuisande, C., Andrade, C., Granado-Lorencio, C., Duque, S. R., Nunez-Avellaneda, M. Effects of zooplankton and conductivity on tropical Utricularia foliosa investment in carnivory. Aquatic Ecology ( 2000 ) 34 137 – 142.en_US
dc.identifier.citedreferenceGuisande, C., Aranguren, N., Andrade-Sossa, C., Prat, N., Granado-Lorencio, C., Barrios, M. L., Bolivar, A., Nunez-Avellaneda, M., Duque, S. R. Relative balance of the cost and benefit associated with carnivory in the tropical Utricularia foliosa. Aquatic Botany ( 2004 ) 80 271 – 282.en_US
dc.identifier.citedreferenceHodick, D., Sievers, A. On the mechanism of trap closure of Venus flytrap ( Dionaea muscipula Ellis). Planta ( 1989 ) 179 32 – 42.en_US
dc.identifier.citedreferenceHumphrey, W., Dalke, A., Schulten, K. VMD: visual molecular dynamics. Journal of Molecular Graphics ( 1996 ) 14 33 – 38.en_US
dc.identifier.citedreferenceJobson, R. W., Albert, V. A. Molecular rates parallel diversification contrasts between carnivorous plant sister lineages. Cladistics ( 2002 ) 18 127 – 136.en_US
dc.identifier.citedreferenceJobson, R. W., Nielsen, R., Laakkonen, L., WikstrÖm, M., Albert, V. A. Adaptive evolution of cytochrome c oxidase: infrastructure for a carnivorous plant radiation. Proceedings of the National Academy of Sciences of the USA ( 2004 ) 101 18064 – 18068.en_US
dc.identifier.citedreferenceJobson, R. W., Playford, J., Cameron, K. M., Albert, V. A. Molecular phylogenetics of Lentibulariaceae inferred from plastid rps 16 intron and trn L–F DNA sequences: implications for character evolution and biogeography. Systematic Botany ( 2003 ) 28 157 – 171.en_US
dc.identifier.citedreferenceJuniper, B. E., Robins, R. J., Joel, D. M. The Carnivorous Plants. London, UK Academic Press, Ltd ( 1989 ).en_US
dc.identifier.citedreferenceKadenbach, B. Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochimica et Biophysica Acta ( 2003 ) 1604 77 – 94.en_US
dc.identifier.citedreferenceKnight, S. E. Costs of carnivory in the common bladderwort, Utricularia macrorhiza. Oecologia ( 1992 ) 89 348 – 355.en_US
dc.identifier.citedreferenceMÉndez, M., Karlsson, P. S. Costs and benefits of carnivory in plants: insights from the photosynthetic performance of four carnivorous plants in a subarctic environment. Oikos ( 1999 ) 86 105 – 112.en_US
dc.identifier.citedreferenceMitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature ( 1961 ) 191 144 – 148.en_US
dc.identifier.citedreferenceMitchell, P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biological Reviews of the Cambridge Philosophical Society ( 1966 ) 41 445 – 502.en_US
dc.identifier.citedreferenceMÜller, K., Borsch, T., Legendre, L., Porembski, S., Theisen, I., Barthlott, W. Evolution of carnivory in Lentibulariaceae and the Lamiales. Plant Biology ( 2004 ) 6 447 – 490.en_US
dc.identifier.citedreferenceOstermeier, C., Harrenga, A., Ermler, U., Michel, H. Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proceedings of the National Academy of Sciences of the USA ( 1997 ) 94 10547 – 10553.en_US
dc.identifier.citedreferenceRibacka, C., Verkhovsky, M. I., Belevich, I., Bloch, D.A., Puustinen, A., WikstrÖm, M. An elementary reaction step of the proton pump is revealed by mutation of tryptophan-164 to phenylalanine in cytochrome c oxidase from Paracoccus denitrificans. Biochemistry ( 2005 ) 44 16502 – 16512.en_US
dc.identifier.citedreferenceRoberts, V.A., Pique, M. E. Definition of the interaction domain for cytochrome c on cytochrome c oxidase. III. Prediction of the docked complex by a complete, systematic search. Journal of Biological Chemistry ( 1999 ) 274 38051 – 38060.en_US
dc.identifier.citedreferenceRichards, J. H. Bladder function in Utricularia purpurea (Lentibulariaceae): is carnivory important? American Journal of Botany ( 2001 ) 88 170 – 176.en_US
dc.identifier.citedreferenceSaraste, M. Oxidative phophorylation at the fin de siecle. Science ( 1999 ) 283 1488 – 1492.en_US
dc.identifier.citedreferenceSchmidt, T. R., Wildman, D. E., Uddin, M., Opazo, J. C., Goodman, M., Grossman, L. I. Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates. Proceedings of the National Academy of Sciences of the USA ( 2005 ) 102 6379 – 6384.en_US
dc.identifier.citedreferenceSharma, V., Puustinen, A., WikstrÖm, M., Laakkonen, L. Sequence analysis of the cbb3 oxidases and an atomic model for the Rhodobacter sphaeroides enzyme. Biochemistry ( 2006 ) 45 5754 – 5765.en_US
dc.identifier.citedreferenceSkotheim, J. M., Mahadevan, L. Physical limits and design principles for plant and fungal movements. Science ( 2005 ) 308 1308 – 1310.en_US
dc.identifier.citedreferenceSoulimane, T., Buse, G., Bourenkov, G. P., Bartunik, H. D., Huber, R., Than, M. E. Structure and mechanism of the aberrant ba(3)-cytochrome c oxidase from Thermus thermophilus. EMBO Journal ( 2000 ) 17 1766 – 1776.en_US
dc.identifier.citedreferenceStucki, J. The optimal efficiency and the economic degtrees of coupling of oxidative phosphorylation. European Journal of Biochemistry ( 1980 ) 109 269 – 283.en_US
dc.identifier.citedreferenceSvensson-Ek, M., Abramson, J., Larsson, G., Tornroth, S., Brzezinski, P., Iwata, S. The X–ray crystal structures of wild-type and EQ(I–286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. Journal of Molecular Biology ( 2002 ) 321 329 – 339.en_US
dc.identifier.citedreferenceSydenham, P. H., Findlay, G. P. Solute and water transport in the bladders of Utricularia. Anderson, W. P., ed. Ion Transport in Plants New York Academic Press ( 1973a ) 583 – 587.en_US
dc.identifier.citedreferenceSydenham, P. H., Findlay, G. P. The rapid movement of the bladders of Utricularia sp. Australian Journal of Biological Sciences ( 1973b ) 26 1115 – 1126.en_US
dc.identifier.citedreferenceSydenham, P. H., Findlay, G. P. Transport of solutes and water by resetting bladders of Utricularia. Australian Journal of Plant Physiology ( 1975 ) 2 335 – 351.en_US
dc.identifier.citedreferenceTsukihara, T., Shimokata, K., Katayama, Y., Shimada, H., Muramoto, K., Aoyama, H., Mochizuki, M., Shinzawa-Itoh, K., Yamashita, E., Yao, M., Ishimura, Y., Yoshikawa, S. The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proceedings of the National Academy of Sciences of the USA ( 2003 ) 100 15304 – 15309.en_US
dc.identifier.citedreferenceWakefield, A. E., Gotelli, N. J., Wittman, S. E., Ellison, A. M. Prey addition alters nutrient stoichiometry of the carnivorous plant Sarracenia purpurea. Ecology ( 2005 ) 86 1737 – 1743.en_US
dc.identifier.citedreferenceWikstrÖm, M. K. F. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature ( 1977 ) 266 271 – 273.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.