Show simple item record

Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides

dc.contributor.authorMcKenzie, Donald L.en_US
dc.contributor.authorCollard, Wendy T.en_US
dc.contributor.authorRice, Kevin G.en_US
dc.date.accessioned2010-06-01T21:43:23Z
dc.date.available2010-06-01T21:43:23Z
dc.date.issued1999-10en_US
dc.identifier.citationMcKenzie, Donald L . ; Collard, Wendy T . ; Rice, Kevin G . (1999). "Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides." The Journal of Peptide Research 54(4): 311-318. <http://hdl.handle.net/2027.42/74767>en_US
dc.identifier.issn1397-002Xen_US
dc.identifier.issn1399-3011en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74767
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=10532236&dopt=citationen_US
dc.description.abstractIn a previous report (M.S. Wadhwa et al . (1997) Bioconjugate Chem. 8, 81–88), we synthesized a panel of polylysine-containing peptides and determined that a minimal repeating lysine chain of 18 residues followed by a tryptophan and an alkylated cysteine residue (AlkCWK 18 ) resulted in the formation of optimal size (78 nm diameter) plasmid DNA condensates that mediated efficient in vitro gene transfer. Shorter polylysine chains produced larger DNA condensates and mediated much lower gene expression while longer lysine chains were equivalent to AlkCWK 18 . Surprisingly, AlkCWK 18 (molecular weight 2672) was a much better gene transfer agent than commercially available low molecular weight polylysine (molecular weight 1000–4000), despite its similar molecular weight. Possible explanations were that the cysteine or tryptophan residue in AlkCWK 18 contributed to the DNA binding and the formation of small condensates or that the homogeneity of AlkCWK 18 relative to low molecular weight polylysine facilitated optimal condensation. To test these hypotheses, the present study prepared AlkCYK 18 and K 20 and used these to form DNA condensates and conduct in vitro gene transfer. The results established that DNA condensates prepared with either AlkCYK 18 or K 20 possessed identical particle size and mediated in vitro gene transfer efficiencies that were indistinguishable from AlkCWK 18 DNA condensates, eliminating the possibility of contributions from cysteine or tryptophan. However, a detailed chromatographic and electrospray mass spectrometry analysis of low molecular weight polylysine revealed it to possess a much lower than anticipated average chain length of dp 6. Thus, the short chain length of low molecular weight polylysine explains its inability to form small DNA condensates and mediate efficient gene transfer relative to AlkCWK 18 DNA condensates. These experiments further emphasize the need to develop homogenous low molecular weight carrier molecules for nonviral gene delivery.en_US
dc.format.extent307138 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMunksgaard International Publishersen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rightsMunksgaard International Publishers Ltd, 1999en_US
dc.subject.otherKey Words: DNA Condensate; Gene Delivery; Gene Therapy; Polylysineen_US
dc.titleComparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptidesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDivisions of Medicinal Chemistry and Pharmaceutics, College of Pharmacy, University of Michigan, Ann Arbor, USA.en_US
dc.identifier.pmid10532236en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74767/1/j.1399-3011.1999.00104.x.pdf
dc.identifier.doi10.1034/j.1399-3011.1999.00104.xen_US
dc.identifier.sourceThe Journal of Peptide Researchen_US
dc.identifier.citedreferenceLedley, F.D. ( 1995 ) Nonviral gene therapy: The promise of genes as pharmaceutical products. Hum. Gene Ther. 6, 1129 – 1144.en_US
dc.identifier.citedreferenceTang, M.X., Redemann, C.T., Szoka, F.C. Jr ( 1996 ) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjugate Chem. 7, 703 – 714.en_US
dc.identifier.citedreferenceHaensler, J. & Szoka, F.C. Jr ( 1993 ) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem. 4, 372 – 379.en_US
dc.identifier.citedreferenceBoussif, O., Zanta, M.A., Behr, J.-P. ( 1996 ) Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther. 3, 1074 – 1080.en_US
dc.identifier.citedreferenceMurphy, J.E., Uno, T., Hamer, J.D., Cohen, F.E., Dwarki, V., Zuckermann, R.N. ( 1998 ) A combinatorial approach to the discovery of efficient cationic peptoid reagents for gene delivery. Proc. Natl Acad. Sci. USA 95, 1517 – 1522.en_US
dc.identifier.citedreferenceNiidome, T., Ohmori, N., Ichinose, A., Wada, A., Mihara, H., Toshiya, H., Haruhiko, A. ( 1997 ) Binding of cationic α-helical peptides to plasmid DNA and their gene transfer abilities into cells. J. Biol. Chem. 272, 15307 – 15312.en_US
dc.identifier.citedreferenceMorris, M.C., Vidal, P., Chaloin, L., Heitz, F., Divita, G. ( 1997 ) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res. 25, 2730 – 2736.en_US
dc.identifier.citedreferenceErbacher, P., Roche, A.C., Monsigny, M., Midoux, P. ( 1995 ) Glycosylated polylysine/DNA complexes: gene transfer efficiency in relation with the size and the sugar substitution level of glycosylated polylysines and with the plasmid size. Bioconjugate Chem. 6, 401 – 410.en_US
dc.identifier.citedreferenceWolfert, M.A. & Seymour, L.W. ( 1996 ) Atomic force microscopic analysis of the influence of the molecular weight of poly (L) lysine on the size of polyelectrolyte complexes formed with DNA. Gene Ther. 3, 269 – 273.en_US
dc.identifier.citedreferenceTang, M.X. & Szoka, F.C. Jr ( 1997 ) The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther. 4, 823 – 832.en_US
dc.identifier.citedreferenceWu, G.Y. & Wu, C.Y. ( 1988 ) Receptor-mediated gene delivery and expression in vivo. J. Biol. Chem. 29, 14621 – 14624.en_US
dc.identifier.citedreferenceMidoux, P., Mendes, C., Legrand, A., Raimond, J., Mayer, R., Monsigny, M., Roche, C. ( 1993 ) Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells. Nucleic Acids Res. 21, 871 – 878.en_US
dc.identifier.citedreferenceMerwin, J.R., Noell, G.S., Thomas, W.L., Chiou, H.C., DeRome, M.E., McKee, T.D., Spitalny, G.L., Findeis, M.A. ( 1994 ) Targeted delivery of DNA using YEE (GalNAcAH) 3, a synthetic glycopeptide ligand for the asialoglycoprotein receptor. Bioconjugate Chem. 5, 612 – 620.en_US
dc.identifier.citedreferenceKatayose, S. & Kataoka, K. ( 1997 ) Water-soluble polyion complex associates of DNA and poly (ethylene glycol)-poly (l-lysine). Block Copolymers 8, 702 – 707.en_US
dc.identifier.citedreferenceToncheva, V., Wolfert, M.A., Dash, P.R., Oupicky, D., Ulbrich, K., Seymour, L.W., Schacht, E.H. ( 1998 ) Novel vectors for gene delivery formed by self-assembly of DNA with poly (l-) lysine grafted with hydrophilic polymers. Biochim. Biophys. Acta 1380, 354 – 368.en_US
dc.identifier.citedreferenceMcKee, T.D., DeRome, M.E., Wu, G.Y., Findeis, M.A. ( 1994 ) Preparation of asialo-orosomucoid–polylysine conjugates. Bioconjugate Chem. 5, 306 – 311.en_US
dc.identifier.citedreferenceWadhwa, M.S., Collard, W.T., Adami, R.C., McKenzie, D.L., Rice, K.G. ( 1997 ) Peptide mediated gene delivery: influence of peptide structure on gene expression. Bioconjugate Chem. 8, 81 – 88.en_US
dc.identifier.citedreferenceHarding, M.M. ( 1992 ) NMR studies on YSPTSPSY: implications for the design of DNA bisintercalators. J. Med. Chem. 35, 4658 – 4664.en_US
dc.identifier.citedreferenceReich, Z., Ittah, Y., Weinberger, S., Minsky, A. ( 1990 ) Chiral and structural discrimination in binding of polypeptides with condensed nucleic acid structures. J. Biol. Chem. 10, 5590 – 5594.en_US
dc.identifier.citedreferenceWehling, K., Arfmann, H.A., Selpke, G., Wagner, K.G. ( 1977 ) Specificity of DNA–basic polypeptide interactions. II. Influence of aromatic amino acid residues investigated with agarose bound lysine copolypeptides. Nucleic Acids Res. 4, 513 – 522.en_US
dc.identifier.citedreferencePlank, C., Zatloukal, K., Cotten, M., Mechtler, K., Wagner, E. ( 1992 ) Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetraantennary galactose ligand. Bioconjugate Chem. 3, 533 – 539.en_US
dc.identifier.citedreferenceBall, H.L. & Mascagni, P. ( 1992 ) Purification of synthetic peptides using reversible chromatographic probes based on the Fmoc molecule. Int. J. Peptide Protein Res. 40, 370 – 379.en_US
dc.identifier.citedreferenceWeigele, M., DeBernardo, S.L., TneGi, J.P., LeimGruger, W. ( 1972 ) A novel reagent for the fluorometric assay of primary amines. J. Am. Chem. Soc. 94, 5927 – 5928.en_US
dc.identifier.citedreferenceWadhwa, M., Knoell, D.L., Young, A.P., Rice, K.G. ( 1995 ) Targeted gene delivery with a low molecular weight glycopeptide. Bioconjugate Chem. 6, 283 – 291.en_US
dc.identifier.citedreferencePouton, C.W. & Seymour, L.W. ( 1998 ) Key issues in non-viral gene delivery. Adv. Drug Deliv. Rev. 34, 3 – 19.en_US
dc.identifier.citedreferenceBrasier, A.R., Tate, J.E., Harener, J.F. ( 1989 ) Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. BioTechniques 7, 1116 – 1122.en_US
dc.identifier.citedreferenceBradford, M.M. ( 1976 ) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72, 248 – 254.en_US
dc.identifier.citedreferenceAdami, R.C., Collard, W.T., Gupta, S.A., Kwok, K.Y., Bonadio, S., Rice, K.G. ( 1998 ) Stability of peptide condensed plasmid DNA formulations. J. Pharmac. Sci. 87, 678 – 683.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.