Show simple item record

The Embedding of Meta-tetra(Hydroxyphenyl)-Chlorin into Silica Nanoparticle Platforms for Photodynamic Therapy and Their Singlet Oxygen Production and pH-dependent Optical Properties ¶

dc.contributor.authorYan, Feien_US
dc.contributor.authorKopelman, Raoulen_US
dc.date.accessioned2010-06-01T21:57:27Z
dc.date.available2010-06-01T21:57:27Z
dc.date.issued2003-12en_US
dc.identifier.citationYan, Fei; Kopelman, Raoul (2003). "The Embedding of Meta-tetra(Hydroxyphenyl)-Chlorin into Silica Nanoparticle Platforms for Photodynamic Therapy and Their Singlet Oxygen Production and pH-dependent Optical Properties ¶ ." Photochemistry and Photobiology 78(6): 587-591. <http://hdl.handle.net/2027.42/74989>en_US
dc.identifier.issn0031-8655en_US
dc.identifier.issn1751-1097en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74989
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14743867&dopt=citationen_US
dc.description.abstractThis study relates to nanoparticle (NP) platforms that attach to tumor cells externally and only deliver singlet oxygen for photodynamic therapy (PDT) while conserving the embedded photosensitizers (PS). As a model, we demonstrate the successful embedding of the PS meta-tetra(hydroxyphenyl)-chlorin ( m -THPC) in NP that are based on a sol–gel silica matrix and also show its positive effect on the singlet oxygen production. The embedding of m -THPC inside silica NP is accomplished by a modified StÖber sol–gel process, in which (3-aminopropyl)-triethoxysilane is introduced during the reaction. Singlet oxygen delivery by the targetable photodynamic NP exceeds that from free PS molecules. In the physiological pH range, there is no significant pH-induced decrease in the fluorescence of m -THPC embedded in silica NP, which might otherwise affect the efficiency of PDT.en_US
dc.format.extent121832 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2003 American Society for Photobiologyen_US
dc.titleThe Embedding of Meta-tetra(Hydroxyphenyl)-Chlorin into Silica Nanoparticle Platforms for Photodynamic Therapy and Their Singlet Oxygen Production and pH-dependent Optical Properties ¶en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MIen_US
dc.identifier.pmid14743867en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74989/1/0031-8655_2003_0780587TEOMIS2.0.CO2.pdf
dc.identifier.doi10.1562/0031-8655(2003)0780587TEOMIS2.0.CO2en_US
dc.identifier.sourcePhotochemistry and Photobiologyen_US
dc.identifier.citedreferenceLevy, J. G., M. Obochi ( 1996 ) New applications in photodynamic therapy introduction. Photochem. Photobiol, 64, 737 – 739.en_US
dc.identifier.citedreferenceDougherty, T. J., C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng ( 1998 ) Photodynamic therapy. J. Natl. Cancer Inst, 90, 889 – 905.en_US
dc.identifier.citedreferenceFuchs, J., J. Thiele ( 1998 ) The role of oxygen in cutaneous photodynamic therapy. Free Radic. Biol. Med, 24, 835 – 847.en_US
dc.identifier.citedreferenceOleinick, N. L., H. H. Evans ( 1998 ) The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat. Res, 150, S146 – S156.en_US
dc.identifier.citedreferencePopovic, E. A., A. H. Kaye, J. S. Hill ( 1996 ) Photodynamic therapy of brain tumors. J. Clin. Laser Med. Surg, 14, 251 – 261.en_US
dc.identifier.citedreferenceJori, J. ( 1996 ) Tumour photosensitizers: approaches to enhance the selectivity and efficiency of photodynamic therapy. J. Photochem. Photobiol. B: Biol, 36, 87 – 93.en_US
dc.identifier.citedreferenceKonan, Y. N., R. Gurny, E. Allemann ( 2002 ) State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B: Biol, 66, 89 – 106.en_US
dc.identifier.citedreferenceLeroux, J. C., E. Allemann, F. De Jaeghere, E. Doelker, R. Gurny ( 1996 ) Biodegradable nanoparticles from sustained release formulations to improved site specific drug delivery. J. Control. Release, 39, 339 – 350.en_US
dc.identifier.citedreferenceSavellano, M. D., T. Hasan ( 2003 ) Targeting cells that overexpress the epidermal growth factor receptor with polyethylene glycolated BPD verteporfin photosensitizer immunoconjugates. Photochem. Photobiol, 77, 431 – 439.en_US
dc.identifier.citedreferenceMonson, E., M. Brasuel, M. Philbert, R. Kopelman 2003 PEBBLE nanosensors for in vitro bioanalysis In Biomedical Photonics Handbook, ( Edited by T. Vo-Dinh ), pp. 59.1 – 59.14. CRC Press, Boca Raton, FLen_US
dc.identifier.citedreferenceKopelman, R. ( 2000 ) Biocompatible probes measure intracellular activity. Biophotonics Int, 7, 22 – 24.en_US
dc.identifier.citedreferenceBergy, E. J., L. Levy, X. P. Wang, L. J. Krebs, M. Lal, K. S. Kim, S. Pakatchi, C. Liebow, P. N. Prasad ( 2002 ) DC magnetic field induced magnetocytolysis of cancer cells targeted by LH-RH magnetic nanoparticles in vitro. Biomed. Microdevices, 4, 293 – 299.en_US
dc.identifier.citedreferenceLevy, L., Y. Sahoo, K. S. Kim, E. J. Bergey, P. N. Prasad ( 2002 ) Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater, 14, 3715 – 3721.en_US
dc.identifier.citedreferenceLipson, R. L., E. J. Blades, A. M. Olsen ( 1961 ) The use of a derivative of hematoporphyrin in tumor detection. J. Natl. Cancer Inst, 26, 1 – 11.en_US
dc.identifier.citedreferenceDougherty, T. J. ( 1987 ) Photosensitizers, therapy and detection of malignant tumors. Photochem. Photobiol, 45, 879 – 889.en_US
dc.identifier.citedreferenceD. Kessel ( 1986 ) Photosensitization with derivatives of hematoporphyrin. Int. J. Radiat. Biol, 49, 901 – 907.en_US
dc.identifier.citedreferenceD. Kessel ( 1986 ) Sites of photosensitization by derivatives of hematoporphyrin. Photochem. Photobiol, 44, 489 – 493.en_US
dc.identifier.citedreferenceHadjur, C., N. Lange, J. Rebstein, P. Monnier, H. van den Bergh, G. Wagnieres ( 1998 ) Spectroscopic studies of photobleaching and photoproduct formation of meta(tetrahydroxyphenyl)chlorin ( m -THPC) used in photodynamic therapy. The production of singlet oxygen by m -THPC. J. Photochem. Photobiol. B.: Biol, 45, 170 – 178.en_US
dc.identifier.citedreferenceDatta, A., A. Dube, B. Jain, A. Tiwari, P. K. Gupta ( 2002 ) The effect of pH and surfactant on the aggregation behavior of Chlroin p6: a fluorescence spectroscopic study. Photochem. Photobiol, 75, 488 – 494.en_US
dc.identifier.citedreferenceLindig, B. A., M. A. J. Rodgers ( 1981 ) Rate parameters for the quenching of singlet oxygen by water-soluble and lipid-soluble substrates in aqueous and micellar systems. Photochem. Photobiol, 33, 627 – 634.en_US
dc.identifier.citedreferenceZimmermann, A., M. Ritsch-Marte, H. Kostron ( 2002 ) In vitro investigation on the pH dependence of the adsorption and fluorescence properties of the photosensitizer mTHPC. Photochem. Photobiol, 75, 335 – 338.en_US
dc.identifier.citedreferenceMoreno, M. J., E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider, R. Kopelman ( 2003 ) Production of singlet oxygen by Ru(dpp(SO 3 ) 2 ) 3 incorporated in polyacrylamide PEBBLEs. Sens. Actuators B: Chem, 90, 82 – 89.en_US
dc.identifier.citedreferenceHadjur, C., A. Jeunet, P. Jardon ( 1994 ) Photosensitization by hypericin: ESR evidence for singlet oxygen and superoxide anion radicals formation in an invitro model. J. Photochem. Photobiol. B: Biol, 26, 67 – 74.en_US
dc.identifier.citedreferenceLindig, B. A., M. A. J. Rodgers, A. P. Schaap ( 1980 ) Determination of the lifetime of singlet oxygen in water-d2 using 9,10-anthracenedipropionic acid, a water-soluble probe. J. Am. Chem. Soc, 102, 5590 – 5593.en_US
dc.identifier.citedreferenceMerkel, P. B., D. R. Kearns ( 1975 ) Rate constant for the reaction between 1,3-diphenylisobenzofuran and singlet oxygen. J. Am. Chem. Soc, 97, 462 – 463.en_US
dc.identifier.citedreferenceCunderlikova, B., E. G. Bjorklund, E. O. Pettersen, J. Moan ( 2001 ) pH-dependent spectral properties of HpIX, TPPS 2a, m THPP and m THPC. Photochem. Photobiol, 74, 246 – 252.en_US
dc.identifier.citedreferencePhillips, J. N. ( 1960 ) The ionization and coordination behaviour of porphyrins. Rev. Pure Appl. Chem, 10, 35 – 60.en_US
dc.identifier.citedreferenceZahir, K. O., A. J. Haim ( 1992 ) Yields of singlet dioxygen produced by the reaction between the excited state of tris(bipyridine)ruthenium(II) and triplet dioxygen in various solvents. J. Photochem. Photobiol. A: Chem, 63, 167 – 172.en_US
dc.identifier.citedreferenceRoy, I., T. Y. Ohulchanskyy, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, P. N. Prasad ( 2003 ) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc, 125, 7860 – 7865.en_US
dc.identifier.citedreferenceBohmer, R. M., G. Morstyn ( 1985 ) Uptake of hematoporphyrin derivative by normal and malignant cells: effect of serum, pH, temperature and cell size. Cancer Res, 50, 7876 – 7881.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.