Show simple item record

Muscarinic and GABA A receptors modulate acetylcholine release in feline basal forebrain

dc.contributor.authorVazquez, Jacquelineen_US
dc.contributor.authorBaghdoyan, Helen A.en_US
dc.date.accessioned2010-06-01T22:00:31Z
dc.date.available2010-06-01T22:00:31Z
dc.date.issued2003-01en_US
dc.identifier.citationVazquez, Jacqueline; Baghdoyan, Helen A . (2003). "Muscarinic and GABA A receptors modulate acetylcholine release in feline basal forebrain." European Journal of Neuroscience 17(2): 249-259. <http://hdl.handle.net/2027.42/75037>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75037
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12542661&dopt=citationen_US
dc.description.abstractAcetylcholine (ACh) release within the basal forebrain changes significantly as a function of sleep and wakefulness, hence identifying the neurochemical modulators of basal forebrain ACh release will contribute to a mechanistic understanding of sleep cycle regulation. This study tested the hypothesis that muscarinic and gamma aminobutyric acid A (GABA A ) receptors modulate basal forebrain ACh release. Cats were anaesthetized with halothane to hold arousal state constant and a microdialysis probe was aimed stereotaxically for the substantia innominata region of the basal forebrain. Four concentrations of the muscarinic antagonist scopolamine (0.1, 0.3, 1.0, and 10 nm) and five concentrations of the GABA A antagonist bicuculline (3, 10, 30, 100, and 300 µm) were delivered by reverse dialysis from the same probes used to collect ACh. These results are based on 27 experiments in nine animals. Scopolamine and bicuculline each caused a concentration dependent enhancement of ACh release. Scopolamine increased ACh by 118% above control levels whereas bicuculline was more effective, causing a 287% increase in ACh release. Scopolamine was more potent (EC 50  = 0.16 nm) than bicuculline (EC 50  ≥ 90 µm) for increasing ACh release. The results support the hypothesis that substantia innominata ACh release is modulated by muscarinic autoreceptors and inhibited by GABA A receptors. These findings are consistent with the interpretation that inhibition of basal forebrain cholinergic neurotransmission by GABA contributes to the generation of sleep.en_US
dc.format.extent502930 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science, Ltden_US
dc.rights© Federation of European Neuroscience Societiesen_US
dc.subject.otherAutoreceptorsen_US
dc.subject.otherBicucullineen_US
dc.subject.otherMicrodialysisen_US
dc.subject.otherSleepen_US
dc.subject.otherWakefulnessen_US
dc.titleMuscarinic and GABA A receptors modulate acetylcholine release in feline basal forebrainen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Anaesthesiology, University of Michigan, Ann Arbor, MI, USA 48109en_US
dc.contributor.affiliationotherDepartment of Neuroscience and Anatomy, The Pennsylvania State University, Hershey, PA 17033en_US
dc.identifier.pmid12542661en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75037/1/j.1460-9568.2003.02451.x.pdf
dc.identifier.doi10.1046/j.1460-9568.2003.02451.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceAllen, T. G. J. ( 1999 ) The role of N-, Q- and R-type Ca 2+ channels in feedback inhibition of ACh release from rat basal forebrain neurones. J. Physiol., 515, 93 – 107.en_US
dc.identifier.citedreferenceAllen, T. G. J. & Brown, D. A. ( 1996 ) Detection and modulation of acetylcholine release from neurites of rat basal forebrain cells in culture. J. Physiol., 492, 453 – 466.en_US
dc.identifier.citedreferenceAnderson, J. J., Kuo, S., Chase, T. N. & Engber, T. M. ( 1993 ) GABA A and GABA B receptors differentially regulate striatal acetylcholine release in vivo. Neurosci. Lett., 160, 126 – 130.en_US
dc.identifier.citedreferenceBaghdoyan, H. A. & Lydic, R. ( 2002 ) Neurotransmitters and neuromodulators regulating sleep. In Bazil, C., Malow, B. & Sammaritano, M., (Eds) Sleep and Epilepsy: the Clinical Spectrum. Elsevier Science, New York, pp. 17 – 44.en_US
dc.identifier.citedreferenceBaghdoyan, H. A., Lydic, R. & Fleegal, M. A. ( 1998 ) M 2 muscarinic autoreceptors modulate acetylcholine release in the medial pontine reticular formation. J. Pharmacol. Exp. Ther., 286, 1446 – 1452.en_US
dc.identifier.citedreferenceBaghdoyan, H. A., Rodrigo-Angulo, M. L., McCarley, R. W. & Hobson, J. A. ( 1984 ) Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions. Brain Res., 306, 39 – 52.en_US
dc.identifier.citedreferenceBaghdoyan, H. A., Spotts, J. L. & Synder, S. G. ( 1993 ) Simultaneous pontine and basal forebrain microinjections of carbachol suppress REM sleep. J. Neurosci., 13, 229 – 242.en_US
dc.identifier.citedreferenceBaxter, M. G. & Chiba, A. A. ( 1999 ) Cognitive functions of the basal forebrain. Curr. Opin. Neurobiol., 9, 178 – 183.en_US
dc.identifier.citedreferenceBenevento, L. A. & McCleary, L. B. ( 1992 ) An immunocytochemical method for marking microelectrode tracks following single-unit recordings in long surviving, awake monkeys. J. Neurosci. Meth., 41, 199 – 204.en_US
dc.identifier.citedreferenceBerman, A. L. & Jones, E. G. ( 1982 ) The Thalamus and Basal Telencephalon of the Cat. The University of Wisconsin Press, Madison.en_US
dc.identifier.citedreferenceBertorelli, R., Forloni, G. L. & Consolo, S. ( 1991 ) Modulation of cortical in vivo acetylcholine release by the basal nuclear complex: role of the pontomesencephalic tegmental area. Brain Res., 563, 353 – 356.en_US
dc.identifier.citedreferenceBillard, W., Binch, H., Crosby, G. & McQuade, R. D. ( 1995 ) Identification of the primary muscarinic autoreceptor subtype in rat striatum as m2 through a correlation of in vivo microdialysis and in vitro receptor binding data. J. Pharmacol. Exp. Ther., 273, 273 – 279.en_US
dc.identifier.citedreferencede Boer, P. & Westerink, B. H. C. ( 1994 ) GABAergic modulation of striatal cholinergic interneurons: an in vivo microdialysis study. J. Neurochem., 62, 70 – 75.en_US
dc.identifier.citedreferencede Boer, P., Westerink, B. H. C. & Horn, A. S. ( 1990 ) The effect of acetylcholinesterase inhibition on the release of acetylcholine from the striatum in vivo: interaction with autoreceptor responses. Neurosci. Lett., 116, 357 – 360.en_US
dc.identifier.citedreferenceBormann, J. ( 2000 ) The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci., 21, 16 – 19.en_US
dc.identifier.citedreferenceBuccafusco, J. J. & Terry, A. V. ( 2000 ) Multiple central nervous system targets for eliciting beneficial effects on memory and cognition. J. Pharmacol. Exp. Ther., 295, 438 – 446.en_US
dc.identifier.citedreferenceConsolo, S., Bertorelli, R., Forloni, G. L. & Butcher, L. L. ( 1990 ) Cholinergic neurons of the pontomesencephalic tegmentum release acetylcholine in the basal nuclear complex of freely moving rats. Neuroscience, 37, 717 – 723.en_US
dc.identifier.citedreferenceDouglas, C. L., Baghdoyan, H. A. & Lydic, R. ( 2001 ) M2 muscarinic autoreceptors modulate acetylcholine release in prefrontal cortex of C57BL/6J mouse. J. Pharmacol. Exp. Ther., 299, 960 – 966.en_US
dc.identifier.citedreferenceFadel, J., Sarter, M. & Bruno, J. P. ( 2001 ) Basal forebrain glutamatergic modulation of cortical acetylcholine release. Synapse, 39, 201 – 212.en_US
dc.identifier.citedreferenceFisher, R. S., Buchwald, N. A., Hull, C. D. & Levine, M. S. ( 1988 ) GABAergic basal forebrain neurons project to the neocortex: the localization of glutamic acid decarboxylase and choline acetyltransferase in feline corticopetal neurons. J. Comp. Neurol., 272, 489 – 502.en_US
dc.identifier.citedreferenceFritschy, J. -M. & Mohler, H. ( 1995 ) GABA A -receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol., 359, 154 – 194.en_US
dc.identifier.citedreferenceGiorgetti, M., Bacciottini, L., Giovannini, M. G., Colivicchi, M. A., Goldfarb, J. & Blandina, P. ( 2000 ) Local GABAergic modulation of acetylcholine release from the cortex of freely moving rats. Eur. J. Neurosci., 12, 1941 – 1948.en_US
dc.identifier.citedreferenceGritti, I., Mainville, L. & Jones, B. E. ( 1993 ) Codistribution of GABA- with acetylcholine-synthesizing neurons in the basal forebrain of the rat. J. Comp. Neurol., 329, 438 – 457.en_US
dc.identifier.citedreferenceGritti, I., Mainville, L., Mancia, M. & Jones, B. E. ( 1997 ) GABAergic and other non-cholinergic basal forebrain neurons project together with cholinergic neurons to meso- and iso-cortex in rat. J. Comp. Neurol., 382, 163 – 177.en_US
dc.identifier.citedreferenceGritti, I., Mariotti, M. & Mancia, M. ( 1998 ) GABAergic and cholinergic basal forebrain and preoptic-anterior hypothalamic projections to the mediodorsal nucleus of the thalamus in the cat. Neuroscience, 85, 149 – 178.en_US
dc.identifier.citedreferenceHimmelheber, A. M., Fadel, J., Sarter, M. & Bruno, J. P. ( 1998 ) Effects of local cholinesterase inhibition on acetylcholine release assessed simultaneously in prefrontal and frontoparietal cortex. Neuroscience, 86, 949 – 957.en_US
dc.identifier.citedreferenceHimmelheber, A. M., Sarter, M. & Bruno, J. P. ( 2000 ) Increases in cortical acetylcholine release during sustained attention performance in rats. Cognit. Brain Res., 9, 313 – 325.en_US
dc.identifier.citedreferenceIchikawa, J., Dai, J., O'Laughlin, I. A., Fowler, W. L. & Meltzer, H. Y. ( 2002 ) Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum. Neuropsychopharmacology, 26, 325 – 339.en_US
dc.identifier.citedreferenceIngham, C. A., Bolam, J. P. & Smith, A. D. ( 1988 ) GABA-immunoreactive synaptic boutons in the rat basal forebrain: comparison of neurons that project to the neocortex with pallidosubthalamic neurons. J. Comp. Neurol., 273, 263 – 282.en_US
dc.identifier.citedreferenceJasper, H. H. & Tessier, J. ( 1971 ) Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science, 172, 601 – 602.en_US
dc.identifier.citedreferenceJones, B. E. & Cuello, A. C. ( 1989 ) Afferents to the basal forebrain cholinergic cell area from pontomesencephalic-catecholamine, serotonin, and acetylcholine-neurons. Neuroscience, 31, 37 – 61.en_US
dc.identifier.citedreferenceJones, B. E. & MÜhlethaler, M. ( 1999 ) Cholinergic and GABAergic neurons of the basal forebrain: role in cortical activation. In Lydic, R. & Baghdoyan, H. A. (Eds), Handbook of Behavioral State Control. CRC Press, Boca Raton, pp. 213 – 233.en_US
dc.identifier.citedreferenceKhateb, A., Fort, P., Williams, S., Serafin, M., Jones, B. E. & MÜhlethaler, M. ( 1997 ) Modulation of cholinergic nucleus basalis neurons by acetylcholine and N -methyl-d-aspartate. Neuroscience, 81, 47 – 55.en_US
dc.identifier.citedreferenceKhateb, A., Fort, P., Williams, S., Serafin, M., MÜhlethaler, M. & Jones, B. E. ( 1998 ) GABAergic input to cholinergic nucleus basalis neurons. Neuroscience, 86, 937 – 947.en_US
dc.identifier.citedreferenceKitaichi, K., Day, J. C. & Quirion, R. ( 1999 ) A novel muscarinic M 4 receptor antagonist provides further evidence of an autoreceptor role for the muscarinic M 2 receptor sub-type. Eur. J. Pharmacol., 383, 53 – 56.en_US
dc.identifier.citedreferenceKodama, T., Lai, Y. -Y. & Siegel, J. ( 1992 ) Enhancement of acetylcholine release during REM sleep in the caudomedial medulla as measured by in vivo microdialysis. Brain Res., 580, 348 – 350.en_US
dc.identifier.citedreferenceKodama, T., Takahashi, Y. & Honda, Y. ( 1990 ) Enhancement of acetylcholine release during paradoxical sleep in the dorsal tegmental field of the cat brain stem. Neurosci. Lett., 114, 277 – 282.en_US
dc.identifier.citedreferenceLeonard, T. O. & Lydic, R. ( 1997 ) Pontine nitric oxide modulates acetylcholine release, rapid eye movement sleep generation, and respiratory rate. J. Neurosci., 17, 774 – 785.en_US
dc.identifier.citedreferenceLevey, A. I., Edmunds, S. M., Hersch, S. M., Wiley, R. G. & Heilman, C. J. ( 1995 ) Light and electron microscopic study of m2 muscarinic acetylcholine receptor in the basal forebrain of the rat. J. Comp. Neurol., 351, 339 – 356.en_US
dc.identifier.citedreferenceLydic, R. & Baghdoyan, H. A. ( 1999 ) Handbook of Behavioral State Control: Cellular and Molecular Mechanisms. CRC Press, Boca Raton, FL.en_US
dc.identifier.citedreferenceLydic, R., McCarley, R. W. & Hobson, J. A. ( 1987 ) Serotonin neurons and sleep. I. Long term recordings of dorsal raphe discharge frequency and PGO waves. Arch. Ital. Biol., 125, 317 – 343.en_US
dc.identifier.citedreferenceManfridi, A., Brambilla, D. & Mancia, M. ( 2001 ) Sleep is differently modulated by basal forebrain GABA A and GABA B receptors. Am. J. Physiol., 281, R170 – R175.en_US
dc.identifier.citedreferenceMarrosu, F., Portas, C., Mascia, M. S., Casu, M. A., Fa, M., Giagheddu, M., Imperato, A. & Gessa, G. L. ( 1995 ) Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Res., 671, 329 – 332.en_US
dc.identifier.citedreferenceMateri, L. M., Rasmusson, D. D. & Semba, K. ( 2000 ) Inhibition of synaptically evoked cortical acetylcholine release by adenosine: an in vivo microdialysis study in the rat. Neuroscience, 97, 219 – 226.en_US
dc.identifier.citedreferenceMateri, L. M. & Semba, K. ( 2001 ) Inhibition of synaptically evoked cortical acetylcholine release by intracortical glutamate: involvement of GABAergic neurons. Eur. J. Neurosci., 14, 38 – 46.en_US
dc.identifier.citedreferenceMesulam, M. -M. & Geula, C. ( 1988 ) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J. Comp. Neurol., 275, 216 – 240.en_US
dc.identifier.citedreferenceMesulam, M. -M., Mufson, E. J., Wainer, B. H. & Levey, A. I. ( 1983 ) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience, 10, 1185 – 1201.en_US
dc.identifier.citedreferenceMiasnikov, A. A., Webster, H. H. & Dykes, R. W. ( 1999 ) Temporally structured impulse activity in spontaneously discharging somatosensory cortical neurons in the awake cat: recognition and quantitative description of four different patterns of bursts, post-recording GFAP immunohistology and computer reconstruction of the studied cortical surface. Brain Res. Prot., 4, 49 – 68.en_US
dc.identifier.citedreferenceMiranda, M. I. & Bermudez-Rattoni, F. ( 1999 ) Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. Proc. Natl Acad. Sci. U. S. A., 96, 6478 – 6482.en_US
dc.identifier.citedreferenceMoor, E., DeBoer, P., Auth, F. & Westerink, B. H. C. ( 1995 ) Characterisation of muscarinic autoreceptors in the septo-hippocampal system of the rat: a microdialysis study. Eur. J. Pharmacol., 294, 155 – 161.en_US
dc.identifier.citedreferenceMoor, E., DeBoer, P. & Westerink, B. H. C. ( 1998a ) GABA receptors and benzodiazepine binding sites modulate hippocampal acetylcholine release in vivo. Eur. J. Pharmacol., 359, 119 – 126.en_US
dc.identifier.citedreferenceMoor, E., Schirm, E., Jacso, J. & Westerink, B. H. C. ( 1998b ) Involvement of medial septal glutamate and GABA A receptors in behaviour-induced acetylcholine release in the hippocampus: a dual probe microdialysis study. Brain Res., 789, 1 – 8.en_US
dc.identifier.citedreferenceMoore, H., Stuckman, S., Sarter, M. & Bruno, J. P. ( 1995 ) Stimulation of cortical acetylcholine efflux by FG 7142 measured with repeated microdialysis sampling. Synapse, 21, 324 – 331.en_US
dc.identifier.citedreferenceMugnaini, E. & Oertel, W. H. ( 1985 ) An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. In: Bjorklund, A. & Hokfelt, T., (Eds) Handbook of Chemical Neuroanatomy, Vol. 4. GABA and Neuropeptides in the CNS. Part I. Elsevier, Amsterdam, pp. 436 – 622.en_US
dc.identifier.citedreferenceMuir, J. L. ( 1997 ) Acetylcholine, aging, and Alzheimer's disease. Pharmacol. Biochem. Behav., 56, 687 – 696.en_US
dc.identifier.citedreferencePerry, E., Walker, M., Grace, J. & Perry, R. ( 1999 ) Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci., 22, 273 – 280.en_US
dc.identifier.citedreferenceQuirion, R., Richard, J. & Wilson, A. ( 1994 ) Muscarinic and nicotinic modulation of cortical acetylcholine release monitored by in vivo microdialysis in freely moving adult rats. Synapse, 17, 92 – 100.en_US
dc.identifier.citedreferenceRobinson, T. E. & Justice, J. B. ( 1991 ) Microdialysis in the Neurosciences. Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceRoth, M. T., Fleegal, M. A., Lydic, R. & Baghdoyan, H. A. ( 1996 ) Pontine acetylcholine release is regulated by muscarinic autoreceptors. NeuroReport, 7, 3069 – 3072.en_US
dc.identifier.citedreferenceRye, D. B., Wainer, B. H., Mesulam, M. -M., Mufson, E. J. & Saper, C. B. ( 1984 ) Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. NeuroScience, 13, 627 – 643.en_US
dc.identifier.citedreferenceSarter, M. & Bruno, J. P. ( 1997 ) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res. Rev., 23, 28 – 46.en_US
dc.identifier.citedreferenceSarter, M. & Bruno, J. P. ( 2000 ) Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience, 95, 933 – 952.en_US
dc.identifier.citedreferenceSemba, K. ( 1999 ) The mesopontine cholinergic system: a dual role in REM sleep and wakefullness. In Lydic, R. & Baghdoyan, H. A. (Eds) Handbook of Behavioral State Control. CRC Press, Boca Raton, FL, pp. 161 – 180.en_US
dc.identifier.citedreferenceSemba, K. ( 2000 ) Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav. Brain Res., 115, 117 – 141.en_US
dc.identifier.citedreferenceSemba, K., Reiner, P. B., McGeer, E. G. & Fibiger, H. C. ( 1988 ) Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat. J. Comp. Neurol., 267, 433 – 453.en_US
dc.identifier.citedreferenceSherin, J. E., Elmquist, J. K., Torrealba, F. & Saper, C. B. ( 1998 ) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J. Neurosci., 18, 4705 – 4721.en_US
dc.identifier.citedreferenceSherin, J. E., Shiromani, P. J., McCarley, R. W. & Saper, C. B. ( 1996 ) Activation of ventrolateral preoptic neurons during sleep. Science, 271, 216 – 219.en_US
dc.identifier.citedreferenceSim, J. A. & Griffith, W. H. ( 1996 ) Muscarinic inhibition of glutamatergic transmissions onto rat magnocellular basal forebrain neurons in a thin-slice preparation. Eur. J. Neurosci., 8, 880 – 891.en_US
dc.identifier.citedreferenceSmiley, J. F., Levey, A. I. & Mesulam, M. -M. ( 1999 ) m2 muscarinic receptor immunolocalization in cholinergic cells of the monkey basal forebrain and striatum. Neuroscience, 90, 803 – 814.en_US
dc.identifier.citedreferenceSteriade, M. & McCarley, R. W. ( 1990 ) Brainstem Control of Wakefulness and Sleep. Plenum Press, New York.en_US
dc.identifier.citedreferenceSzymusiak, R. ( 1995 ) Magnocellular nuclei of the basal forebrain: substrates of sleep and arousal regulation. Sleep, 18, 478 – 500.en_US
dc.identifier.citedreferenceSzymusiak, R., Alam, N. & McGinty, D. ( 2000 ) Discharge patterns of neurons in cholinergic regions of the basal forebrain during waking and sleep. Behav. Brain Res., 115, 171 – 182.en_US
dc.identifier.citedreferenceSzymusiak, R., Alam, N., Steininger, T. L. & McGinty, D. ( 1998 ) Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res., 803, 178 – 188.en_US
dc.identifier.citedreferenceSzymusiak, R. & McGinty, D. ( 1986 ) Sleep-related neuronal discharge in the basal forebrain of cats. Brain Res., 370, 82 – 92.en_US
dc.identifier.citedreferenceSzymusiak, R. & McGinty, D. ( 1989 ) Sleep-waking discharge of basal forebrain projection neurons in cats. Brain Res. Bull., 22, 423 – 430.en_US
dc.identifier.citedreferenceTobler, I. & Scherschlicht, R. ( 1990 ) Sleep and EEG slow-wave activity in the domestic cat: effect of sleep deprivation. Behav. Brain Res., 37, 109 – 118.en_US
dc.identifier.citedreferenceUrsin, R. ( 1968 ) The two stages of slow wave sleep in the cat and their relation to REM sleep. Brain Res., 11, 347 – 356.en_US
dc.identifier.citedreferenceVazquez, J. & Baghdoyan, H. A. ( 2001 ) Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking. Am. J. Physiol., 280, R598 – R601.en_US
dc.identifier.citedreferenceVazquez, J. & Baghdoyan, H. A. ( 2002 ) Acetylcholine (ACh) release in basal forebrain (BF) is modulated by muscarinic and GABA A receptors. Soc. Neurosci. Abstracts, 28, 870.9.en_US
dc.identifier.citedreferenceVazquez, J., Lydic, R. & Baghdoyan, H. A. ( 2002 ) The nitric oxide synthase inhibitor N G -nitro-l-arginine increases basal forebrain acetylcholine release during sleep and wakefulness. J. Neurosci., 22, 5597 – 5605.en_US
dc.identifier.citedreferenceVazquez, J., Merchant-Nancy, H., Garcia, F. & Drucker-Colin, R. ( 1998 ) Effects of sensory stimulation on REM sleep duration. Sleep, 21, 138 – 142.en_US
dc.identifier.citedreferenceWesterink, B. H. C., Damsma, G., Rollema, H., de Vries, J. B. & Horn, A. S. ( 1987 ) Scope and limitations of in vivo brain dialysis: a comparison of its application to various neurotransmitter systems. Life Sci., 41, 1763 – 1776.en_US
dc.identifier.citedreferenceWilliams, J. A., Comisarow, J., Day, J., Fibiger, H. C. & Reiner, P. B. ( 1994 ) State-dependent release of acetylcholine in rat thalamus measured by in vivo microdialysis. J. Neurosci., 14, 5236 – 5242.en_US
dc.identifier.citedreferenceWinkler, J., Suhr, S. T., Gage, F. H., Thal, L. J. & Fisher, L. J. ( 1995 ) Essential role of neocortical acetylcholine in spatial memory. Nature, 375, 484 – 487.en_US
dc.identifier.citedreferenceZaborszky, L. & Cullinan, W. E. ( 1992 ) Projections from the nucleus accumbens to cholinergic neurons of the ventral pallidum: a correlated light and electron microscopic double-immunolabeling study in rat. Brain Res., 570, 92 – 101.en_US
dc.identifier.citedreferenceZaborszky, L. & Duque, A. ( 2000 ) Local synaptic connections of basal forebrain neurons. Behav. Brain Res., 115, 143 – 158.en_US
dc.identifier.citedreferenceZaborszky, L., Heimer, L., Eckenstein, F. & Leranth, C. ( 1986 ) GABAergic input to cholinergic forebrain neurons: an ultrastructural study using retrograde tracing of HRP and double immunolabeling. J. Comp. Neurol., 250, 282 – 295.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.