Show simple item record

Glutamate motivational ensembles in nucleus accumbens: rostrocaudal shell gradients of fear and feeding

dc.contributor.authorReynolds, Sheila M.en_US
dc.contributor.authorBerridge, Kent C.en_US
dc.date.accessioned2010-06-01T22:21:31Z
dc.date.available2010-06-01T22:21:31Z
dc.date.issued2003-05en_US
dc.identifier.citationReynolds, Sheila M.; Berridge, Kent C. (2003). "Glutamate motivational ensembles in nucleus accumbens: rostrocaudal shell gradients of fear and feeding." European Journal of Neuroscience 17(10): 2187-2200. <http://hdl.handle.net/2027.42/75354>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75354
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12786986&dopt=citationen_US
dc.description.abstractThis study demonstrates that microinjection of an AMPA/kainate glutamate antagonist elicits motivated fear and feeding behaviour mapped along rostrocaudal gradients of positive-to-negative valence in nucleus accumbens shell (similar to rostrocaudal shell gradients recently reported for GABA agonist microinjections). Rats received rostral or caudal microinjections of the glutamate AMPA/kainate receptor antagonist DNQX (0, 50, 450 or 850 ng in 0.5 µL) or the NMDA receptor antagonist MK-801 (0, 0.5, 1 or 2 µg in 0.5 µL), into medial accumbens shell prior to behavioural tests for fear, feeding or conditioning of place preference or avoidance. Another group received rostral or caudal microinjections of DNQX in nucleus accumbens core. Rostral shell DNQX microinjections potently increased appetitive food intake and established only weak conditioned place avoidance. Caudal shell DNQX microinjections elicited defensive treading behaviour, caused rats to defensively bite the experimenter and emit fearful distress vocalizations when handled, and established strong conditioned place avoidance. By contrast, no rostrocaudal gradients of motivational bivalence were produced by microinjections of the glutamate AMPA/kainate receptor antagonist DNQX into the core, or by microinjections of the NMDA antagonist MK-801 into the shell. Our results indicate that appetitive and aversive motivation is carried in anatomically differentiated channels by mesocorticolimbic glutamate signals to microcircuits in the medial shell. Hyperpolarization of local shell ensembles by AMPA/kainate glutamate receptor blockade elicits fear and feeding behaviours mapped along distinct positive-to-negative rostrocaudal gradients.en_US
dc.format.extent554145 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science, Ltden_US
dc.rights© Federation of European Neuroscience Societiesen_US
dc.subject.otherAffecten_US
dc.subject.otherAMPAen_US
dc.subject.otherAversionen_US
dc.subject.otherDefenseen_US
dc.subject.otherNMDAen_US
dc.subject.otherRaten_US
dc.subject.otherRewarden_US
dc.titleGlutamate motivational ensembles in nucleus accumbens: rostrocaudal shell gradients of fear and feedingen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Psychology, University of Michigan, Ann Arbor, MI 48109–1109, USAen_US
dc.identifier.pmid12786986en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75354/1/j.1460-9568.2003.02642.x.pdf
dc.identifier.doi10.1046/j.1460-9568.2003.02642.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceAparicio-Legarza, M. I., Cutts, A. J., Davis, B. & Reynolds, G. P. ( 1997 ) Deficits of [ 3 H]d-aspartate binding to glutamate uptake sites in striatal and accumbens tissue in patients with schizophrenia. Neurosci. Lett., 232, 13 – 16.en_US
dc.identifier.citedreferenceBachus, S. E. & Kleinman, J. E. ( 1996 ) The neuropathology of schizophrenia. J. Clin. Psychiatry, 57, 72 – 83.en_US
dc.identifier.citedreferenceBakshi, V. P. & Kelley, A. E. ( 1993 ) Feeding induced by opioid stimulation of the ventral striatum – role of opiate receptor subtypes. J. Pharmacol. Exp. Ther., 265, 1253 – 1260.en_US
dc.identifier.citedreferenceBardo, M. T. & Hammer, R. P., Jr ( 1991 ) Autoradiographic localization of dopamine D1 and D2 receptors in rat nucleus accumbens: resistance to differential rearing conditions. Neuroscience, 45, 281 – 290.en_US
dc.identifier.citedreferenceBartlett, E., Hallin, A., Chapman, B. & Angrist, B. ( 1997 ) Selective sensitization to the psychosis-inducing effects of cocaine: a possible marker for addiction relapse vulnerability? Neuropsychopharmacology, 16, 77 – 82.en_US
dc.identifier.citedreferenceBasso, A. M. & Kelley, A. E. ( 1999 ) Feeding induced by GABA (A) receptor stimulation within the nucleus accumbens shell: regional mapping and characterization of macronutrient and taste preference. Behav. Neurosci., 113, 324 – 336.en_US
dc.identifier.citedreferenceBeckstead, R. M. ( 1979 ) An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat. J. Comp. Neurol., 184, 43 – 62.en_US
dc.identifier.citedreferenceBerridge, K. C. ( 2001 ) Reward learning: Reinforcement, incentives, and expectations. In Medin, D. L. (ed.), The Psychology of Learning and Motivation. Academic Press, NY, pp. 223 – 278.en_US
dc.identifier.citedreferenceBerridge, C. W., Mitton, E., Clark, W. & Roth, R. H. ( 1999 ) Engagement in a non-escape (displacement) behavior elicits a selective and lateralized suppression of frontal cortical dopaminergic utilization in stress. Synapse, 32, 187 – 197.en_US
dc.identifier.citedreferenceBerridge, K. C. & Robinson, T. E. ( 1998 ) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Rev., 28, 309 – 369.en_US
dc.identifier.citedreferenceBerridge, C. W., Stratford, T. L., Foote, S. L. & Kelley, A. E. ( 1997 ) Distribution of dopamine beta-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens. Synapse, 27, 230 – 241.en_US
dc.identifier.citedreferenceBeurrier, C. & Malenka, R. C. ( 2002 ) Enhanced inhibition of synaptic transmission by dopamine in the nucleus accumbens during behavioral sensitization to cocaine. J. Neurosci., 22, 5817 – 5822.en_US
dc.identifier.citedreferenceBlackburn, J. R., Pfaus, J. G. & Phillips, A. G. ( 1992 ) Dopamine functions in appetitive and defensive behaviours. Prog. Neurobiol., 39, 247 – 279.en_US
dc.identifier.citedreferenceCardinal, R. N., Parkinson, J. A., Hall, J. & Everitt, B. J. ( 2002 ) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev., 26, 321 – 352.en_US
dc.identifier.citedreferenceChao, S. Z., Ariano, M. A., Peterson, D. A. & Wolf, M. E. ( 2002 ) D1 dopamine receptor stimulation increases GluR1 surface expression in nucleus accumbens neurons. J. Neurochem., 83, 704 – 712.en_US
dc.identifier.citedreferenceChristie, M. J., Summers, R. J., Stephenson, J. A., Cook, C. J. & Beart, P. M. ( 1987 ) Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D[ 3 H]aspartate and [ 3 H]GABA. Neuroscience, 22, 425 – 439.en_US
dc.identifier.citedreferenceChurchill, L. & Kalivas, P. W. ( 1994 ) A topographically organized gamma-aminobutyric acid projection from the ventral pallidum to the nucleus accumbens in the rat. J. Comp. Neurol., 345, 579 – 595.en_US
dc.identifier.citedreferenceCohen, B. D., Rosenbaum, G., Luby, E. D. & Gottlieb, J. S. ( 1966 ) Comparison of phencyclidine hydrochloride (Sernyl) with other drugs. Arch. Gen. Psychiatry, 6, 395 – 401.en_US
dc.identifier.citedreferenceCornish, J. L. & Kalivas, P. W. ( 2001 ) Cocaine sensitization and craving: differing roles for dopamine and glutamate in the nucleus accumbens. J. Addict. Dis., 20, 43 – 54.en_US
dc.identifier.citedreferenceCrowder, T. L. & Weiner, J. L. ( 2002 ) Functional characterization of kainate receptors in the rat nucleus accumbens core region. J. Neurophysiol., 88, 41 – 48.en_US
dc.identifier.citedreferenceCsernansky, J. G. & Bardgett, M. E. ( 1998 ) Limbic–cortical neuronal damage and the pathophysiology of schizophrenia. Schizophr. Bull., 24, 231 – 248.en_US
dc.identifier.citedreferenceDelfs, J. M., Zhu, Y., Druhan, J. P. & Aston-Jones, G. S. ( 1998 ) Origin of noradrenergic afferents to the shell subregion of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat. Brain Res., 806, 127 – 140.en_US
dc.identifier.citedreferenceDing, D. C., Gabbott, P. L. & Totterdell, S. ( 2001 ) Differences in the laminar origin of projections from the medial prefrontal cortex to the nucleus accumbens shell and core regions in the rat. Brain Res., 917, 81 – 89.en_US
dc.identifier.citedreferenceEllison, G., Keys, A. & Noguchi, K. ( 1999 ) Long-term changes in brain following continuous phencyclidine administration: an autoradiographic study using flunitrazepam, ketanserin, mazindol, quinuclidinyl benzilate, piperidyl-3,4–3H (N)-TCP, and AMPA receptor ligands. Pharmacol. Toxicol., 84, 9 – 17.en_US
dc.identifier.citedreferenceEveritt, B. J., Dickinson, A. & Robbins, T. W. ( 2001 ) The neuropsychological basis of addictive behaviour. Brain Res. Rev., 36, 129 – 138.en_US
dc.identifier.citedreferenceEveritt, B. J., Parkinson, J. A., Olmstead, M. C., Arroyo, M., Robledo, P. & Robbins, T. W. ( 1999 ) Associative processes in addiction and reward. The role of amygdala–ventral striatal subsystems. Ann. NY Acad. Sci., 877, 412 – 438.en_US
dc.identifier.citedreferenceFrench, S. J. & Totterdell, S. ( 2002 ) Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens. J. Comp. Neurol., 446, 151 – 165.en_US
dc.identifier.citedreferenceFuller, T. A., Russchen, F. T. & Price, J. L. ( 1987 ) Sources of presumptive glutamergic/aspartergic afferents to the rat ventral striatopallidal region. J. Comp. Neurol., 258, 317 – 338.en_US
dc.identifier.citedreferenceGorelova, N. & Yang, C. R. ( 1997 ) The course of neural projection from the prefrontal cortex to the nucleus accumbens in the rat. Neuroscience, 76, 689 – 706.en_US
dc.identifier.citedreferenceGracy, K. N., Svingos, A. L. & Pickel, V. M. ( 1997 ) Dual ultrastructural localization of mu-opioid receptors and NMDA-type glutamate receptors in the shell of the rat nucleus accumbens. J. Neurosci., 17, 4839 – 4848.en_US
dc.identifier.citedreferenceGray, J. A., Kumari, V., Lawrence, N. & Young, A. M. J. ( 1999 ) Functions of the dopaminergic innervation of the nucleus accumbens. Psychobiology, 27, 225 – 235.en_US
dc.identifier.citedreferenceGroenewegen, H. J., Mulder, A. B., Beijer, A. V., Wright, C. I., Lopes da Silva, F. H. & Pennartz, C. M. ( 1999 ) Hippocampal and amygdaloid interactions in the nucleus accumbens. Psychobiology, 27, 149 – 164.en_US
dc.identifier.citedreferenceHeimer, L., Alheid, G. F., de Olmos, J. S., Groenewegen, H. J., Haber, S. N., Harlan, R. E. & Zahm, D. S. ( 1997 ) The accumbens: beyond the core–shell dichotomy. J. Neuropsychiatry Clin. Neurosci., 9, 354 – 381.en_US
dc.identifier.citedreferenceHeimer, L., Zahm, D. S., Churchill, L., Kalivas, P. W. & Wohltmann, C. ( 1991 ) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience, 41, 89 – 125.en_US
dc.identifier.citedreferenceHorvitz, J. C. ( 2000 ) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience, 96, 651 – 656.en_US
dc.identifier.citedreferenceHotsenpiller, G., Giorgetti, M. & Wolf, M. E. ( 2001 ) Alterations in behaviour and glutamate transmission following presentation of stimuli previously associated with cocaine exposure. Eur. J. Neurosci., 14, 1843 – 1855.en_US
dc.identifier.citedreferenceHu, X. T. & White, F. J. ( 1996 ) Glutamate receptor regulation of rat nucleus accumbens neurons in vivo. Synapse, 23, 208 – 218.en_US
dc.identifier.citedreferenceHu, X. T. & White, F. J. ( 1997 ) Dopamine enhances glutamate-induced excitation of rat striatal neurons by cooperative activation of D1 and D2 class receptors. Neurosci. Lett., 224, 61 – 65.en_US
dc.identifier.citedreferenceIkeda, H., Akiyama, G., Fujii, Y., Minowa, R., Koshikawa, N. & Cools, A. R. ( 2003 ) Role of AMPA and NMDA receptors in the nucleus accumbens shell in turning behaviour of rats: interaction with dopamine receptors. Neuropharmacology, 44, 81 – 87.en_US
dc.identifier.citedreferenceJavitt, D. C. & Zukin, S. R. ( 1991 ) Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry, 148, 1301 – 1308.en_US
dc.identifier.citedreferenceJentsch, J. D. & Roth, R. H. ( 1999 ) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 20, 201 – 225.en_US
dc.identifier.citedreferenceJiang, Z. G. & North, R. A. ( 1992 ) Pre- and postsynaptic inhibition by opioids in rat striatum. J. Neurosci., 12, 356 – 361.en_US
dc.identifier.citedreferenceJohnson, L. R., Aylward, R. L. & Totterdell, S. ( 1994a ) Convergence of limbic afferents and the mesolimbic dopamine system in the nucleus accumbens: Anatomical studies in the rat. In Haslam, C., Ewing, J., Farnbach, R., Johns, U. & Weekes, B. (eds), Cognitive Functions in Health, Disease and Disorder. Australian Academic Press, Brisbane, pp. 137 – 144.en_US
dc.identifier.citedreferenceJohnson, L. R., Aylward, R. L. & Totterdell, S. ( 1994b ) Synaptic organization of the amygdalar input to the nucleus accumbens in the rat. In Percheron, G., McKenzie, J. S. & Feger, J. S. (eds), Basal Ganglia IV. Plenum, New York.en_US
dc.identifier.citedreferenceKapur, S. ( 2003 ) Psychosis as state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry, 160, 13 – 23.en_US
dc.identifier.citedreferenceKawaguchi, Y., Wilson, C. J., Augood, S. J. & Emson, P. C. ( 1995 ) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci., 18, 527 – 535.en_US
dc.identifier.citedreferenceKelley, A. E. ( 1999 ) Neural integrative activities of nucleus accumbens subregions in relation to learning and motivation. Psychobiology, 27, 198 – 213.en_US
dc.identifier.citedreferenceKelley, A. E. & Swanson, C. J. ( 1997 ) Feeding induced by blockade of AMPA and kainate receptors within the ventral striatum: a microinfusion mapping study. Behav. Brain Res., 89, 107 – 113.en_US
dc.identifier.citedreferenceKiyatkin, E. A. ( 2002 ) Dopamine in the nucleus accumbens: cellular actions, drug- and behavior-associated fluctuations, and a possible role in an organism's adaptive activity. Behav. Brain Res., 137, 27 – 46.en_US
dc.identifier.citedreferenceKoob, G. F. ( 1999 ) The role of the striatopallidal and extended amygdala systems in drug addiction. Ann. NY Acad. Sci., 877, 445 – 460.en_US
dc.identifier.citedreferenceKoob, G. F. & Le Moal, M. ( 2001 ) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24, 97 – 129.en_US
dc.identifier.citedreferenceLondei, T., Valentini, A. M. & Leone, V. G. ( 1998 ) Investigative burying by laboratory mice may involve non-functional, compulsive, behaviour. Behav. Brain Res., 94, 249 – 254.en_US
dc.identifier.citedreferenceMaldonado-Irizarry, C. S., Swanson, C. J. & Kelley, A. E. ( 1995 ) Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J. Neurosci., 15, 6779 – 6788.en_US
dc.identifier.citedreferenceMalinow, R. & Malenka, R. C. ( 2002 ) AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci., 25, 103 – 126.en_US
dc.identifier.citedreferenceMcBride, W. J., Murphy, J. M. & Ikemoto, S. ( 1999 ) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav. Brain Res., 101, 129 – 152.en_US
dc.identifier.citedreferenceMcDonald, A. J. ( 1991 ) Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience, 44, 1 – 14.en_US
dc.identifier.citedreferenceMead, A. N. & Stephens, D. N. ( 2003 ) Selective disruption of stimulus–reward learning in glutamate receptor gria1 knock-out mice. J. Neurosci., 23, 1041 – 1048.en_US
dc.identifier.citedreferenceMeredith, G. E. ( 1999 ) The synaptic framework for chemical signaling in nucleus accumbens. Ann. NY Acad. Sci., 877, 140 – 156.en_US
dc.identifier.citedreferenceMeredith, G. E., Pennartz, C. M. & Groenewegen, H. J. ( 1993 ) The cellular framework for chemical signalling in the nucleus accumbens. Prog. Brain Res., 99, 3 – 24.en_US
dc.identifier.citedreferenceMeredith, G. E. & Wouterlood, F. G. ( 1990 ) Hippocampal and midline thalamic fibers and terminals in relation to the choline acetyltransferase-immunoreactive neurons in nucleus accumbens of the rat: a light and electron microscopic study. J. Comp. Neurol., 296, 204 – 221.en_US
dc.identifier.citedreferenceMeredith, G. E., Wouterlood, F. G. & Pattiselanno, A. ( 1990 ) Hippocampal fibers make synaptic contacts with glutamate decarboxylase-immunoreactive neurons in the rat nucleus accumbens. Brain Res., 513, 329 – 334.en_US
dc.identifier.citedreferenceMulder, A. B., Hodenpijl, M. G. & Lopes da Silva, F. H. ( 1998 ) Electrophysiology of the hippocampal and amygdaloid projections to the nucleus accumbens of the rat: convergence, segregation, and interaction of inputs. J. Neurosci., 18, 5095 – 5102.en_US
dc.identifier.citedreferenceNeigh-McCandless, G., Kravitz, B. A., Sarter, M. & Bruno, J. P. ( 2002 ) Stimulation of cortical acetylcholine release following blockade of ionotropic glutamate receptors in nucleus accumbens. Eur. J. Neurosci., 16, 1259 – 1266.en_US
dc.identifier.citedreferenceNicola, S. M. & Malenka, R. C. ( 1997 ) Dopamine depresses excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens. J. Neurosci., 17, 5697 – 5710.en_US
dc.identifier.citedreferenceNoga, J. T. & Wang, H. ( 2002 ) Further postmortem autoradiographic studies of AMPA receptor binding in schizophrenia. Synapse, 45, 250 – 258.en_US
dc.identifier.citedreferenceO'Donnell, P. ( 1999 ) Ensemble coding in the nucleus accumbens. Psychobiology, 27, 187 – 197.en_US
dc.identifier.citedreferenceO'Donnell, P. & Grace, A. A. ( 1993 ) Physiological and morphological properties of accumbens core and shell neurons recorded in vitro. Synapse, 13, 135 – 160.en_US
dc.identifier.citedreferenceO'Donnell, P. & Grace, A. A. ( 1995 ) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J. Neurosci., 15, 3622 – 3639.en_US
dc.identifier.citedreferenceO'Donnell, P., Greene, J., Pabello, N., Lewis, B. L. & Grace, A. A. ( 1999 ) Modulation of cell firing in the nucleus accumbens. Ann. NY Acad. Sci., 877, 157 – 175.en_US
dc.identifier.citedreferenceOwings, D. H. & Coss, R. G. ( 1977 ) Snake mobbing by California ground squirrels – adaptive variation and ontogeny. Behaviour, 62, 50 – 69.en_US
dc.identifier.citedreferenceOwings, D. H. & Morton, E. S. ( 1998 ) Animal Vocal Communication: a new approach. Cambridge University Press, Cambridge, New York.en_US
dc.identifier.citedreferencePark, W. K., Bari, A. A., Jey, A. R., Anderson, S. M., Spealman, R. D., Rowlett, J. K. & Pierce, R. C. ( 2002 ) Cocaine administered into the medial prefrontal cortex reinstates cocaine-seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus accumbens. J. Neurosci., 22, 2916 – 2925.en_US
dc.identifier.citedreferencePaxinos, P. & Watson, C. ( 1997 ) The Rat Brain in Stereotaxic Coordinates, 3rd edn. Academic Press, Inc., London.en_US
dc.identifier.citedreferencePeciÑa, S. & Berridge, K. C. ( 2000 ) Opioid eating site in accumbens shell mediates food intake and hedonic ‘liking’: map based on microinjection Fos plumes. Brain Res., 863, 71 – 86.en_US
dc.identifier.citedreferencePennartz, C. M., Boeijinga, P. H., Kitai, S. T. & Lopes da Silva, F. H. ( 1991 ) Contribution of NMDA receptors to postsynaptic potentials and paired-pulse facilitation in identified neurons of the rat nucleus accumbens in vitro. Exp. Brain Res., 86, 190 – 198.en_US
dc.identifier.citedreferencePennartz, C. M., Boeijinga, P. H. & Lopes da Silva, F. H. ( 1990 ) Locally evoked potentials in slices of the rat nucleus accumbens: NMDA and non-NMDA receptor mediated components and modulation by GABA. Brain Res., 529, 30 – 41.en_US
dc.identifier.citedreferencePennartz, C. M., Groenewegen, H. J. & Lopes da Silva, F. H. ( 1994 ) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog. Neurobiol., 42, 719 – 761.en_US
dc.identifier.citedreferencePhillipson, O. T. & Griffiths, A. C. ( 1985 ) The topographic order of inputs to nucleus accumbens in the rat. Neuroscience, 16, 275 – 296.en_US
dc.identifier.citedreferencePulvirenti, L. & Diana, M. ( 2001 ) Drug dependence as a disorder of neural plasticity: focus on dopamine and glutamate. Rev. Neurosci., 12, 141 – 158.en_US
dc.identifier.citedreferenceRada, P., Tucci, S., Murzi, E. & Hernandez, L. ( 1997 ) Extracellular glutamate increases in the lateral hypothalamus and decreases in the nucleus accumbens during feeding. Brain Res., 768, 338 – 340.en_US
dc.identifier.citedreferenceReynolds, S. M. & Berridge, K. C. ( 2001 ) Fear and feeding in the nucleus accumbens shell: rostrocaudal segregation of GABA-elicited defensive behavior versus eating behavior. J. Neurosci., 21, 3261 – 3270.en_US
dc.identifier.citedreferenceReynolds, S. M. & Berridge, K. C. ( 2002 ) Positive and negative motivation in nucleus accumbens shell: Bivalent rostrocaudal gradients for GABA-elicited eating, taste ‘liking’/‘disliking’ reactions, place preference/avoidance, and fear. J. Neurosci., 22, 7308 – 7320.en_US
dc.identifier.citedreferenceRobinson, T. E. & Berridge, K. C. ( 1993 ) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev., 18, 247 – 291.en_US
dc.identifier.citedreferenceSalamone, J. D. ( 1994 ) The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav. Brain Res., 61, 117 – 133.en_US
dc.identifier.citedreferenceSalamone, J. D. & Correa, M. ( 2002 ) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav. Brain Res., 137, 3 – 25.en_US
dc.identifier.citedreferenceSarter, M. & Bruno, J. P. ( 1997 ) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res. Rev., 23, 28 – 46.en_US
dc.identifier.citedreferenceSaulskaya, N. B. & Marsden, C. A. ( 1997 ) Glutamate levels in the nucleus accumbens in a conditioned emotional response. Neurosci. Behav. Physiol., 27, 548 – 551.en_US
dc.identifier.citedreferenceSaulskaya, N. & Marsden, C. A. ( 1995 ) Extracellular glutamate in the nucleus accumbens during a conditioned emotional response in the rat. Brain Res., 698, 114 – 120.en_US
dc.identifier.citedreferenceSaulskaya, N. B. & Mikhailova, M. O. ( 2002 ) Feeding-induced decrease in extracellular glutamate level in the rat nucleus accumbens: dependence on glutamate uptake. Neuroscience, 112, 791 – 801.en_US
dc.identifier.citedreferenceSawa, A. & Snyder, S. H. ( 2002 ) Schizophrenia: diverse approaches to a complex disease. Science, 296, 692 – 695.en_US
dc.identifier.citedreferenceSesack, S. R., Deutch, A. Y., Roth, R. H. & Bunney, B. S. ( 1989 ) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J. Comp. Neurol., 290, 213 – 242.en_US
dc.identifier.citedreferenceSesack, S. R. & Pickel, V. M. ( 1992 ) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J. Comp. Neurol., 320, 145 – 160.en_US
dc.identifier.citedreferenceSmith-Roe, S. L. & Kelley, A. E. ( 2000 ) Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J. Neurosci., 20, 7737 – 7742.en_US
dc.identifier.citedreferenceSpyraki, C., Kazandjian, A. & Varonos, D. ( 1985 ) Diazepam-induced place preference conditioning: appetitive and antiaversive properties. Psychopharmacology, 87, 225 – 232.en_US
dc.identifier.citedreferenceStratford, T. R. & Kelley, A. E. ( 1997 ) GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. J. Neurosci., 17, 4434 – 4440.en_US
dc.identifier.citedreferenceStratford, T. R., Swanson, C. J. & Kelley, A. ( 1998 ) Specific changes in food intake elicited by blockade or activation of glutamate receptors in the nucleus accumbens shell. Behav. Brain Res., 93, 43 – 50.en_US
dc.identifier.citedreferenceSun, N. & Cassell, M. D. ( 1993 ) Intrinsic GABAergic neurons in the rat central extended amygdala. J. Comp. Neurol., 330, 381 – 404.en_US
dc.identifier.citedreferenceSwanson, L. W. ( 2000 ) Cerebral hemisphere regulation of motivated behavior (1). Brain Res., 886, 113 – 164.en_US
dc.identifier.citedreferenceTaber, M. T. & Fibiger, H. C. ( 1997 ) Feeding-evoked dopamine release in the nucleus accumbens: regulation by glutamatergic mechanisms. Neuroscience, 76, 1105 – 1112.en_US
dc.identifier.citedreferenceTarazi, F. I., Campbell, A. & Baldessarini, R. J. ( 1998a ) Effects of hippocampal lesions on striatolimbic ionotropic glutamatergic receptors. Neurosci. Lett., 250, 13 – 16.en_US
dc.identifier.citedreferenceTarazi, F. I., Campbell, A., Yeghiayan, S. K. & Baldessarini, R. J. ( 1998b ) Localization of ionotropic glutamate receptors in caudate-putamen and nucleus accumbens septi of rat brain: comparison of NMDA, AMPA, and kainate receptors. Synapse, 30, 227 – 235.en_US
dc.identifier.citedreferenceThomas, M. J., Beurrier, C., Bonci, A. & Malenka, R. C. ( 2001 ) Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nature Neurosci., 4, 1217 – 1223.en_US
dc.identifier.citedreferenceTotterdell, S. & Meredith, G. E. ( 1997 ) Topographical organization of projections from the entorhinal cortex to the striatum of the rat. Neuroscience, 78, 715 – 729.en_US
dc.identifier.citedreferenceTribollet, E., Barberis, C., Dubois-Dauphin, M. & Dreifuss, J. J. ( 1992 ) Localization and characterization of binding sites for vasopressin and oxytocin in the brain of the guinea pig. Brain Res., 589, 15 – 23.en_US
dc.identifier.citedreferenceTurchi, J. & Sarter, M. ( 2001 ) Bidirectional modulation of basal forebrain N-methyl-D-aspartate receptor function differentially affects visual attention but not visual discrimination performance. Neuroscience, 104, 407 – 417.en_US
dc.identifier.citedreferenceTzschentke, T. M. ( 1998 ) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol., 56, 613 – 672.en_US
dc.identifier.citedreferenceUchimura, N., Higashi, H. & Nishi, S. ( 1989 ) Membrane properties and synaptic responses of the guinea pig nucleus accumbens neurons in vitro. J. Neurophysiol., 61, 769 – 779.en_US
dc.identifier.citedreferenceVan Bockstaele, E. J. & Pickel, V. M. ( 1995 ) GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res., 682, 215 – 221.en_US
dc.identifier.citedreferenceVanderschuren, L. J. & Kalivas, P. W. ( 2000 ) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl. ), 151, 99 – 120.en_US
dc.identifier.citedreferenceVoorn, P. & Docter, G. J. ( 1992 ) A rostrocaudal gradient in the synthesis of enkephalin in nucleus accumbens. Neuroreport, 3, 161 – 164.en_US
dc.identifier.citedreferenceWilkie, D. M., MacLennan, A. J. & Pinel, J. P. ( 1979 ) Rat defensive behavior: burying noxious food. J. Exp. Anal. Behav., 31, 299 – 306.en_US
dc.identifier.citedreferenceWise, R. A. ( 1998 ) Drug-activation of brain reward pathways. Drug Alcoh. Depend., 51, 13 – 22.en_US
dc.identifier.citedreferenceWright, C. I., Beijer, A. V. & Groenewegen, H. J. ( 1996 ) Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized. J. Neurosci., 16, 1877 – 1893.en_US
dc.identifier.citedreferenceWyvell, C. L. & Berridge, K. C. ( 2000 ) Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward ‘wanting’ without enhanced ‘liking’ or response reinforcement. J. Neurosci., 20, 8122 – 8130.en_US
dc.identifier.citedreferenceZaborszky, L., Alheid, G. F., Beinfeld, M. C., Eiden, L. E., Heimer, L. & Palkovits, M. ( 1985 ) Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience, 14, 427 – 453.en_US
dc.identifier.citedreferenceZahm, D. S. & Brog, J. S. ( 1992 ) On the significance of subterritories in the ‘accumbens’ part of the rat ventral striatum. Neuroscience, 50, 751 – 767.en_US
dc.identifier.citedreferenceZahm, D. S. & Heimer, L. ( 1993 ) Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. J. Comp. Neurol., 327, 220 – 232.en_US
dc.identifier.citedreferenceZhang, M. & Kelley, A. E. ( 2000 ) Enhanced intake of high-fat food following striatal mu-opioid stimulation: microinjection mapping and fos expression. Neuroscience, 99, 267 – 277.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.