Show simple item record

Biological systems of the host cell involved in Agrobacterium infection

dc.contributor.authorCitovsky, Vitalyen_US
dc.contributor.authorKozlovsky, Stanislav V.en_US
dc.contributor.authorLacroix, Benoîten_US
dc.contributor.authorZaltsman, Adien_US
dc.contributor.authorDafny-Yelin, Meryen_US
dc.contributor.authorVyas, Shachien_US
dc.contributor.authorTovkach, Andriyen_US
dc.contributor.authorTzfira, Tzvien_US
dc.date.accessioned2010-06-01T22:26:02Z
dc.date.available2010-06-01T22:26:02Z
dc.date.issued2007-01en_US
dc.identifier.citationCitovsky, Vitaly; Kozlovsky, Stanislav V.; Lacroix, BenoÎt; Zaltsman, Adi; Dafny-Yelin, Mery; Vyas, Shachi; Tovkach, Andriy; Tzfira, Tzvi (2007). "Biological systems of the host cell involved in Agrobacterium infection." Cellular Microbiology 9(1): 9-20. <http://hdl.handle.net/2027.42/75425>en_US
dc.identifier.issn1462-5814en_US
dc.identifier.issn1462-5822en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75425
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17222189&dopt=citationen_US
dc.description.abstractGenetic transformation of plants by Agrobacterium , which in nature causes neoplastic growths, represents the only known case of trans -kingdom DNA transfer. Furthermore, under laboratory conditions, Agrobacterium can also transform a wide range of other eukaryotic species, from fungi to sea urchins to human cells. How can the Agrobacterium virulence machinery function in such a variety of evolutionarily distant and diverse species? The answer to this question lies in the ability of Agrobacterium to hijack fundamental cellular processes which are shared by most eukaryotic organisms. Our knowledge of these host cellular functions is critical for understanding the molecular mechanisms that underlie genetic transformation of eukaryotic cells. This review outlines the bacterial virulence machinery and provides a detailed discussion of seven major biological systems of the host cell–cell surface receptor arrays, cellular motors, nuclear import, chromatin targeting, targeted proteolysis, DNA repair, and plant immunity – thought to participate in the Agrobacterium -mediated genetic transformation.en_US
dc.format.extent471769 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2006 The Authors; Journal compilation © 2006 Blackwell Publishing Ltden_US
dc.titleBiological systems of the host cell involved in Agrobacterium infectionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA.en_US
dc.contributor.affiliationotherDepartment of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794, USA.en_US
dc.identifier.pmid17222189en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75425/1/j.1462-5822.2006.00830.x.pdf
dc.identifier.doi10.1111/j.1462-5822.2006.00830.xen_US
dc.identifier.sourceCellular Microbiologyen_US
dc.identifier.citedreferenceAbu-Arish, A., Frenkiel-Krispin, D., Fricke, T., Tzfira, T., Citovsky, V., Grayer Wolf, S., and Elbaum, M. ( 2004 ) Three-dimensional reconstruction of Agrobacterium VirE2 protein with single-stranded DNA. J Biol Chem 279: 25359 – 25363.en_US
dc.identifier.citedreferenceAlonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., et al. ( 2003 ) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653 – 657.en_US
dc.identifier.citedreferencevan Attikum, H., and Hooykaas, P.J.J. ( 2003 ) Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Res 31: 826 – 832.en_US
dc.identifier.citedreferencevan Attikum, H., Bundock, P., and Hooykaas, P.J.J. ( 2001 ) Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J 20: 6550 – 6558.en_US
dc.identifier.citedreferencevan Attikum, H., Bundock, P., Overmeer, R.M., Lee, L.Y., Gelvin, S.B., and Hooykaas, P.J.J. ( 2003 ) The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res 31: 4247 – 4255.en_US
dc.identifier.citedreferenceAvivi, Y., Morad, V., Ben-Meir, H., Zhao, J., Kashkush, K., Tzfira, T., et al. ( 2004 ) Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Dev Dyn 230: 12 – 22.en_US
dc.identifier.citedreferenceBakÓ, L., Umeda, M., Tiburcio, A.F., Schell, J., and Koncz, C. ( 2003 ) The VirD2 pilot protein of Agrobacterium -transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 100: 10108 – 10113.en_US
dc.identifier.citedreferenceBallas, N., and Citovsky, V. ( 1997 ) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94: 10723 – 10728.en_US
dc.identifier.citedreferenceBartel, B., and Bartel, D.P. ( 2003 ) MicroRNAs: at the root of plant development? Plant Physiol 132: 709 – 717.en_US
dc.identifier.citedreferenceBisaro, D.M. ( 2006 ) Silencing suppression by geminivirus proteins. Virology 344: 158 – 168.en_US
dc.identifier.citedreferenceBurr, T.J., Bazzi, C., Sule, S., and Otten, L. ( 1998 ) Crown gall of grape: biology of Agrobacterium vitis and the development of disease control strategies. Plant Dis 82: 1288 – 1297.en_US
dc.identifier.citedreferenceChilton, M.D., and Que, Q. ( 2003 ) Targeted integration of T-DNA into the tobacco genome at double-strand breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 133: 956 – 965.en_US
dc.identifier.citedreferenceChristie, P.J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., and Cascales, E. ( 2005 ) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59: 451 – 485.en_US
dc.identifier.citedreferenceCitovsky, V., Zupan, J., Warnick, D., and Zambryski, P.C. ( 1992 ) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256: 1802 – 1805.en_US
dc.identifier.citedreferenceCitovsky, V., Warnick, D., and Zambryski, P.C. ( 1994 ) Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc Natl Acad Sci USA 91: 3210 – 3214.en_US
dc.identifier.citedreferenceCitovsky, V., Kapelnikov, A., Oliel, S., Zakai, N., Rojas, M.R., Gilbertson, R.L., et al. ( 2004 ) Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro. J Biol Chem 279: 29528 – 29533.en_US
dc.identifier.citedreferenceDeng, W., Chen, L., Wood, D.W., Metcalfe, T., Liang, X., Gordon, M.P., et al. ( 1998 ) Agrobacterium VirD2 protein interacts with plant host cyclophilins. Proc Natl Acad Sci USA 95: 7040 – 7045.en_US
dc.identifier.citedreferenceDitt, R.F., Nester, E.W., and Comai, L. ( 2001 ) Plant gene expression response to Agrobacterium tumefaciens. Proc Natl Acad Sci USA 98: 10954 – 10959.en_US
dc.identifier.citedreferenceDitt, R.F., Nester, E., and Comai, L. ( 2005 ) The plant cell defense and Agrobacterium tumefaciens. FEMS Microbiol Lett 247: 207 – 213.en_US
dc.identifier.citedreferenceDitt, R.F., Kerr, K.F., de Figueiredo, P., Delrow, J., Comai, L., and Nester, E.W. ( 2006 ) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interact 19: 665 – 681.en_US
dc.identifier.citedreferenceDombek, P., and Ream, L.W. ( 1997 ) Functional domains of Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 179: 1165 – 1173.en_US
dc.identifier.citedreferenceDunoyer, P., Himber, C., and Voinnet, O. ( 2006 ) Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38: 258 – 262.en_US
dc.identifier.citedreferenceDurrant, W.E., and Dong, X. ( 2004 ) Systemic acquired resistance. Annu Rev Phytopathol 42: 185 – 209.en_US
dc.identifier.citedreferenceFriesner, J., and Britt, A.B. ( 2003 ) Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34: 427 – 440.en_US
dc.identifier.citedreferenceGallego, M.E., Bleuyard, J.Y., Daoudal-Cotterell, S., Jallut, N., and White, C.I. ( 2003 ) Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35: 557 – 565.en_US
dc.identifier.citedreferenceGaspar, Y.M., Nam, J., Schultz, C.J., Lee, L.Y., Gilson, P.R., Gelvin, S.B., and Bacic, A. ( 2004 ) Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant ( rat1) that results in a decreased efficiency of Agrobacterium transformation. Plant Physiol 135: 2162 – 2171.en_US
dc.identifier.citedreferenceGelvin, S.B. ( 1998 ) Agrobacterium VirE2 proteins can form a complex with T strands in the plant cytoplasm. J Bacteriol 180: 4300 – 4302.en_US
dc.identifier.citedreferenceGelvin, S.B. ( 2003 ) Agrobacterium -mediated plant transformation: the biology behind the ‘gene-jockeying’ tool. Microbiol Mol Biol Rev 67: 16 – 37.en_US
dc.identifier.citedreferenceGuralnick, B., Thomsen, G., and Citovsky, V. ( 1996 ) Transport of DNA into the nuclei of Xenopus oocytes by a modified VirE2 protein of Agrobacterium. Plant Cell 8: 363 – 373.en_US
dc.identifier.citedreferenceHenry, T., Gorvel, J.P., and Meresse, S. ( 2006 ) Molecular motors hijacking by intracellular pathogens. Cell Microbiol 8: 23 – 32.en_US
dc.identifier.citedreferenceHirooka, T., and Kado, C.I. ( 1986 ) Location of the right boundary of the virulence region on Agrobacterium tumefaciens plasmid pTiC58 and a host specifying gene next to the boundary. J Bacteriol 168: 237 – 243.en_US
dc.identifier.citedreferenceHo, M.S., Tsai, P.I., and Chien, C.T. ( 2006 ) F-box proteins: the key to protein degradation. J Biomed Sci 13: 181 – 191.en_US
dc.identifier.citedreferenceHoward, E., Zupan, J., Citovsky, V., and Zambryski, P.C. ( 1992 ) The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68: 109 – 118.en_US
dc.identifier.citedreferenceHwang, H.H., and Gelvin, S.B. ( 2004 ) Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16: 3148 – 3167.en_US
dc.identifier.citedreferenceJasin, M. ( 1996 ) Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12: 224 – 228.en_US
dc.identifier.citedreferenceKado, C.I. ( 2000 ) The role of the T-pilus in horizontal gene transfer and tumorigenesis. Curr Opin Microbiol 3: 643 – 648.en_US
dc.identifier.citedreferenceKoukolikova-Nicola, Z., Raineri, D., Stephens, K., Ramos, C., Tinland, B., Nester, E.W., and Hohn, B. ( 1993 ) Genetic analysis of the virD operon of Agrobacterium tumefaciens: a search for functions involved in transport of T-DNA into the plant cell nucleus and in T-DNA integration. J Bacteriol 175: 723 – 731.en_US
dc.identifier.citedreferenceLacroix, B., Vaidya, M., Tzfira, T., and Citovsky, V. ( 2005 ) The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J 24: 428 – 437.en_US
dc.identifier.citedreferenceLacroix, B., Tzfira, T., Vainstein, A., and Citovsky, V. ( 2006a ) A case of promiscuity: Agrobacterium 's endless hunt for new partners. Trends Genet 22: 29 – 37.en_US
dc.identifier.citedreferenceLacroix, B., Li, J., Tzfira, T., and Citovsky, V. ( 2006b ) Will you let me use your nucleus? How Agrobacterium gets its T-DNA expressed in the host plant cell. Can J Physiol Pharmacol 84: 333 – 345.en_US
dc.identifier.citedreferenceLai, E.M., and Kado, C.I. ( 2000 ) The T-pilus of Agrobacterium tumefaciens. Trends Microbiol 8: 361 – 369.en_US
dc.identifier.citedreferenceLi, J., Krichevsky, A., Vaidya, M., Tzfira, T., and Citovsky, V. ( 2005a ) Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl Acad Sci USA 102: 5733 – 5738.en_US
dc.identifier.citedreferenceLi, J., Vaidya, M., White, C., Vainstein, A., Citovsky, V., and Tzfira, T. ( 2005b ) Involvement of KU80 in T-DNA integration in plant cells. Proc Natl Acad Sci USA 102: 19231 – 19236.en_US
dc.identifier.citedreferenceLiu, P., and Nester, E.W. ( 2006 ) Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of A grobacterium tumefaciens C58. Proc Natl Acad Sci USA 103: 4658 – 4662.en_US
dc.identifier.citedreferenceLoyter, A., Rosenbluh, J., Zakai, N., Li, J., Kozlovsky, S.V., Tzfira, T., and Citovsky, V. ( 2005 ) The plant VirE2 interacting protein 1. A molecular link between the Agrobacterium T-complex and the host cell chromatin? Plant Physiol 138: 1318 – 1321.en_US
dc.identifier.citedreferenceLuby-Phelps, K. ( 2000 ) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192: 189 – 221.en_US
dc.identifier.citedreferenceMcCullen, C.A., and Binns, A.N. ( 2006 ) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22: 101 – 127.en_US
dc.identifier.citedreferenceMysore, K.S., Bassuner, B., Deng, X.B., Darbinian, N.S., Motchoulski, A., Ream, L.W., and Gelvin, S.B. ( 1998 ) Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol Plant Microbe Interact 11: 668 – 683.en_US
dc.identifier.citedreferenceMysore, K.S., Nam, J., and Gelvin, S.B. ( 2000a ) An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci USA 97: 948 – 953.en_US
dc.identifier.citedreferenceMysore, K.S., Kumar, C.T., and Gelvin, S.B. ( 2000b ) Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. Plant J 21: 9 – 16.en_US
dc.identifier.citedreferenceNagai, H., and Roy, C.R. ( 2003 ) Show me the substrates: modulation of host cell function by type IV secretion systems. Cell Microbiol 5: 373 – 383.en_US
dc.identifier.citedreferenceNÜrnberger, T., Brunner, F., Kemmerling, B., and Piater, L. ( 2004 ) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198: 249 – 266.en_US
dc.identifier.citedreferencePaulsson, M., and Wadstrom, T. ( 1990 ) Vitronectin and type-I collagen binding by Staphylococcus aureus and coagulase-negative streptococci. FEMS Microbiol Immunol 65: 55 – 62.en_US
dc.identifier.citedreferenceRegensburg-Tuink, A.J., and Hooykaas, P.J.J. ( 1993 ) Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 363: 69 – 71.en_US
dc.identifier.citedreferenceRhee, Y., Gurel, F., Gafni, Y., Dingwall, C., and Citovsky, V. ( 2000 ) A genetic system for detection of protein nuclear import and export. Nat Biotechnol 18: 433 – 437.en_US
dc.identifier.citedreferenceSalman, H., Abu-Arish, A., Oliel, S., Loyter, A., Klafter, J., Granek, R., and Elbaum, M. ( 2005 ) Nuclear localization signal peptides induce molecular delivery along microtubules. Biophys J 89: 2134 – 2145.en_US
dc.identifier.citedreferenceSalomon, S., and Puchta, H. ( 1998 ) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17: 6086 – 6095.en_US
dc.identifier.citedreferenceSchrammeijer, B., Risseeuw, E., Pansegrau, W., Regensburg-TuÏnk, T.J.G., Crosby, W.L., and Hooykaas, P.J.J. ( 2001 ) Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr Biol 11: 258 – 262.en_US
dc.identifier.citedreferenceShaked, H., Melamed-Bessudo, C., and Levy, A.A. ( 2005 ) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102: 12265 – 12269.en_US
dc.identifier.citedreferenceSheng, J., and Citovsky, V. ( 1996 ) Agrobacterium –plant cell interaction: have virulence proteins – will travel. Plant Cell 8: 1699 – 1710.en_US
dc.identifier.citedreferenceYe, G.N., Stone, D., Pang, S.Z., Creely, W., Gonzalez, K., and Hinchee, M. ( 1999 ) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J 19: 249 – 257.en_US
dc.identifier.citedreferenceSwart, S., Logman, T.J., Smit, G., Lugtenberg, B.J., and Kijne, J.W. ( 1994 ) Purification and partial characterization of a glycoprotein from pea ( Pisum sativum ) with receptor activity for rhicadhesin, an attachment protein of Rhizobiaceae. Plant Mol Biol 24: 171 – 183.en_US
dc.identifier.citedreferenceTao, Y., Rao, P.K., Bhattacharjee, S., and Gelvin, S.B. ( 2004 ) Expression of plant protein phosphatase 2C interferes with nuclear import of the Agrobacterium T-complex protein VirD2. Proc Natl Acad Sci USA 101: 5164 – 5169.en_US
dc.identifier.citedreferenceTzfira, T. ( 2006 ) On tracks and locomotives: the long route of DNA to the nucleus. Trends Microbiol 14: 61 – 63.en_US
dc.identifier.citedreferenceTzfira, T., Rhee, Y., Chen, M.-H., and Citovsky, V. ( 2000 ) Nucleic acid transport in plant–microbe interactions: the molecules that walk through the walls. Annu Rev Microbiol 54: 187 – 219.en_US
dc.identifier.citedreferenceTzfira, T., Vaidya, M., and Citovsky, V. ( 2001 ) VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20: 3596 – 3607.en_US
dc.identifier.citedreferenceTzfira, T., Vaidya, M., and Citovsky, V. ( 2002 ) Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis VIP1 gene. Proc Natl Acad Sci USA 99: 10435 – 10440.en_US
dc.identifier.citedreferenceTzfira, T., Frankmen, L., Vaidya, M., and Citovsky, V. ( 2003 ) Site-specific integration of Agrobacterium T-DNA via double-stranded intermediates. Plant Physiol 133: 1011 – 1023.en_US
dc.identifier.citedreferenceTzfira, T., Vaidya, M., and Citovsky, V. ( 2004a ) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431: 87 – 92.en_US
dc.identifier.citedreferenceTzfira, T., Li, J., Lacroix, B., and Citovsky, V. ( 2004b ) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20: 375 – 383.en_US
dc.identifier.citedreferenceVeena, Doerge, R.W., and Gelvin, S.B. ( 2003 ) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35: 219 – 236.en_US
dc.identifier.citedreferenceVergunst, A.C., Schrammeijer, B., den Dulk-Ras, A., de Vlaam, C.M.T., Regensburg-Tuink, T.J., and Hooykaas, P.J.J. ( 2000 ) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290: 979 – 982.en_US
dc.identifier.citedreferenceVillemont, E., Dubois, F., Sangwan, R.S., Vasseur, G., Bourgeois, Y., and Sangwan-Norreel, B.S. ( 1997 ) Role of the host cell cycle in the Agrobacterium -mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201: 160 – 172.en_US
dc.identifier.citedreferenceWagner, V.T., and Matthysse, A.G. ( 1992 ) Involvement of vitronectin-like protein in attachment of Agrobacterium tumefaciens to carrot suspension culture cells. J Bacteriol 174: 5999 – 6003.en_US
dc.identifier.citedreferenceYi, H., Mysore, K.S., and Gelvin, S.B. ( 2002 ) Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation. Plant J 32: 285 – 298.en_US
dc.identifier.citedreferenceZhu, Y., Nam, J., Carpita, N.C., Matthysse, A.G., and Gelvin, S.B. ( 2003a ) Agrobacterium -mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene. Plant Physiol 133: 1000 – 1010.en_US
dc.identifier.citedreferenceZhu, Y., Nam, J., Humara, J.M., Mysore, K., Lee, L.Y., Cao, H., et al. ( 2003b ) Identification of Arabidopsis rat mutants. Plant Physiol 132: 494 – 505.en_US
dc.identifier.citedreferenceZiemienowicz, A., GÖrlich, D., Lanka, E., Hohn, B., and Rossi, L. ( 1999 ) Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium. Proc Natl Acad Sci USA 96: 3729 – 3733.en_US
dc.identifier.citedreferenceZiemienowicz, A., Merkle, T., Schoumacher, F., Hohn, B., and Rossi, L. ( 2001 ) Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. Plant Cell 13: 369 – 384.en_US
dc.identifier.citedreferenceZipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. ( 2006 ) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium -mediated transformation. Cell 125: 749 – 760.en_US
dc.identifier.citedreferenceZupan, J., Citovsky, V., and Zambryski, P.C. ( 1996 ) Agrobacterium VirE2 protein mediates nuclear uptake of ssDNA in plant cells. Proc Natl Acad Sci USA 93: 2392 – 2397.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.