Show simple item record

Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis

dc.contributor.authorPeters-Golden, Marc L.en_US
dc.contributor.authorGleason, M. M.en_US
dc.contributor.authorTogias, A.en_US
dc.date.accessioned2010-06-01T22:26:28Z
dc.date.available2010-06-01T22:26:28Z
dc.date.issued2006-06en_US
dc.identifier.citationPeters-Golden, M . ; Gleason, M . M . ; Togias, A . (2006). "Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis." Clinical & Experimental Allergy 36(6): 689-703. <http://hdl.handle.net/2027.42/75432>en_US
dc.identifier.issn0954-7894en_US
dc.identifier.issn1365-2222en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75432
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16776669&dopt=citationen_US
dc.description.abstractCysteinyl leukotrienes (CysLTs) are a family of inflammatory lipid mediators synthesized from arachidonic acid by a variety of cells, including mast cells, eosinophils, basophils, and macrophages. This article reviews the data for the role of CysLTs as multi-functional mediators in allergic rhinitis (AR). We review the evidence that: (1) CysLTs are released from inflammatory cells that participate in AR, (2) receptors for CysLTs are located in nasal tissue, (3) CysLTs are increased in patients with AR and are released following allergen exposure, (4) administration of CysLTs reproduces the symptoms of AR, (5) CysLTs play roles in the maturation, as well as tissue recruitment, of inflammatory cells, and (6) a complex inter-regulation between CysLTs and a variety of other inflammatory mediators exists.en_US
dc.format.extent338069 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2006 Blackwell Publishing Ltden_US
dc.subject.otherAllergic Rhinitisen_US
dc.subject.otherCysteinyl Leukotrienesen_US
dc.subject.otherCysLT 1 Receptoren_US
dc.subject.otherEosinophilsen_US
dc.subject.otherInflammationen_US
dc.subject.otherLeukotriene C4 Synthaseen_US
dc.subject.other5-lipoxygenaseen_US
dc.titleCysteinyl leukotrienes: multi-functional mediators in allergic rhinitisen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherMerck & Co., Inc., West Point, PA, USA anden_US
dc.contributor.affiliationotherJohns Hopkins University, Baltimore, MD, USAen_US
dc.identifier.pmid16776669en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75432/1/j.1365-2222.2006.02498.x.pdf
dc.identifier.doi10.1111/j.1365-2222.2006.02498.xen_US
dc.identifier.sourceClinical & Experimental Allergyen_US
dc.identifier.citedreferenceLeynaert B, Bousquet J, Neukirch C, Liard R, Neukirch F. Perennial rhinitis: an independent risk factor for asthma in nonatopic subjects. Results from the European Community Respiratory Health Survey. J Allergy Clin Immunol 1999; 104: 301 – 4.en_US
dc.identifier.citedreferenceTogias A. Rhinitis and asthma: evidence for respiratory system integration. J Allergy Clin Immunol 2003; 111: 1171 – 83.en_US
dc.identifier.citedreferenceMurphy RC, Hammarstrom S, Samuelsson B. Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci USA 1979; 76: 4275 – 9.en_US
dc.identifier.citedreferenceDrazen JM, Israel E, O'Byrne PM. Treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med 1999; 340: 197 – 206.en_US
dc.identifier.citedreferenceMita H, Hasegawa M, Saito H, Akiyama K. Levels of cysteinyl leukotriene receptor mRNA in human peripheral leucocytes: significantly higher expression of cysteinyl leukotriene receptor 2 mRNA in eosinophils. Clin Exp Allergy 2001; 31: 1714 – 23.en_US
dc.identifier.citedreferenceMellor EA, Frank N, Soler D et al. Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: functional distinction from CysLT1R. Proc Natl Acad Sci USA 2003; 100: 11589 – 93.en_US
dc.identifier.citedreferenceGauvreau GM, Boulet LP, Postma DS et al. Effect of low-dose ciclesonide on allergen-induced responses in subjects with mild allergic asthma. J Allergy Clin Immunol 2005; 116: 285 – 91.en_US
dc.identifier.citedreferenceSteinke JW, Borish L. Leukotriene receptors in rhinitis and sinusitis. Curr Allergy Asthma Rep 2004; 4: 217 – 23.en_US
dc.identifier.citedreferenceBorish L. Allergic rhinitis: systemic inflammation and implications for management. J Allergy Clin Immunol 2003; 112: 1021 – 31.en_US
dc.identifier.citedreferenceCorrigan C, Mallett K, Ying S et al. Expression of the cysteinyl leukotriene receptors cysLT(1) and cysLT(2) in aspirin-sensitive and aspirin-tolerant chronic rhinosinusitis. J Allergy Clin Immunol 2005; 115: 316 – 22.en_US
dc.identifier.citedreferenceLynch KR, O'Neill GP, Liu Q et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 1999; 399: 789 – 93.en_US
dc.identifier.citedreferenceEglite S, Pluss K, Dahinden CA. Requirements for C5a receptor-mediated IL-4 and IL-13 production and leukotriene C4 generation in human basophils. J Immunol 2000; 165: 2183 – 9.en_US
dc.identifier.citedreferenceTakafuji S. IL-3 and IL-5 prime normal human eosinophils to produce leukotriene C4 in response to soluable agonists. J Immunol 1991; 147: 3855 – 61.en_US
dc.identifier.citedreferenceKohi F, Miyagawa H, Agrawal DK, Bewtra AK, Townley RG. Generation of leukotriene B4 and C4 from granulocytes of normal controls, allergic rhinitis, and asthmatic subjects. Ann Allergy 1990; 65: 228 – 32.en_US
dc.identifier.citedreferenceFigueroa DJ, Borish L, Baramki D, Philip G, Austin CP, Evans JF. Expression of cysteinyl leukotriene synthetic and signalling proteins in inflammatory cells in active seasonal allergic rhinitis. Clin Exp Allergy 2003; 33: 1380 – 8.en_US
dc.identifier.citedreferenceShirasaki H, Kanaizumi E, Watanabe K et al. Expression and localization of the cysteinyl leukotriene 1 receptor in human nasal mucosa. Clin Exp Allergy 2002; 32: 1007 – 12.en_US
dc.identifier.citedreferenceFigueroa DJ, Breyer RM, Defoe SK et al. Expression of the cysteinyl leukotriene 1 receptor in normal human lung and peripheral blood leukocytes. Am J Respir Crit Care Med 2001; 163: 226 – 33.en_US
dc.identifier.citedreferenceMellor EA, Maekawa A, Austen KF, Boyce JA. Cysteinyl leukotriene receptor 1 is also a pyrimidinergic receptor and is expressed by human mast cells. Proc Natl Acad Sci USA 2001; 98: 7964 – 9.en_US
dc.identifier.citedreferenceBautz F, Denzlinger C, Kanz L, Mohle R. Chemotaxis and transendothelial migration of CD34(+) hematopoietic progenitor cells induced by the inflammatory mediator leukotriene D4 are mediated by the 7-transmembrane receptor cyslt1. Blood 2001; 97: 3433 – 40.en_US
dc.identifier.citedreferenceSousa AR, Parikh A, Scadding G, Corrigan CJ, Lee TH. Leukotriene-receptor expression on nasal mucosal inflammatory cells in aspirin-sensitive rhinosinusitis. N Engl J Med 2002; 347: 1524 – 6.en_US
dc.identifier.citedreferenceThivierge M, Stankova J, Rola-Pleszczynski M. IL-13 and IL-14 up-regulate cysteinyl leukotriene 1 receptor expression in human monocytes and macrophages. J Immunol 2001; 167: 2855 – 60.en_US
dc.identifier.citedreferenceStevenson DD, Simon RA, Mathison DA. Aspirin-sensitive asthma: tolerance to aspirin after positive oral aspirin challenges. J Allergy Clin Immunol 1980; 66: 82 – 8.en_US
dc.identifier.citedreferenceBeller TC, Maekawa A, Friend DS, Austen KF, Kanaoka Y. Targeted gene disruption reveals the role of the cysteinyl leukotriene 2 receptor in increased vascular permeability and in bleomycin-induced pulmonary fibrosis in mice. J Biol Chem 2004; 279: 46129 – 34.en_US
dc.identifier.citedreferenceHui Y, Cheng Y, Smalera I et al. Directed vascular expression of human cysteinyl leukotriene 2 receptor modulates endothelial permeability and systemic blood pressure. Circulation 2004; 110: 3360 – 6.en_US
dc.identifier.citedreferenceMaekawa A, Austen KF, Kanaoka Y. Targeted gene disruption reveals the role of cysteinyl leukotriene 1 receptor in the enhanced vascular permeability of mice undergoing acute inflammatory responses. J Biol Chem 2002; 277: 20820 – 9.en_US
dc.identifier.citedreferenceBeller TC, Friend DS, Maekawa A, Lam BK, Austen KF, Kanaoka Y. Cysteinyl leukotriene 1 receptor controls the severity of chronic pulmonary inflammation and fibrosis. Proc Natl Acad Sci USA 2004; 101: 3047 – 52.en_US
dc.identifier.citedreferenceKnani J, Campbell A, Enander I, Peterson CG, Michel FB, Bousquet J. Indirect evidence of nasal inflammation assessed by titration of inflammatory mediators and enumeration of cells in nasal secretions of patients with chronic rhinitis. J Allergy Clin Immunol 1992; 90: 880 – 9.en_US
dc.identifier.citedreferenceKojima T, Asakura K. A study of chemical mediators in patients with allergic rhinitis. 3. Release of histamine and leukotrienes from in vitro nasal mucosa. Nippon Jibiinkoka Gakkai Kaiho 1991; 94: 587 – 93.en_US
dc.identifier.citedreferencede Graaf-in't Veld, Garrelds IM, Koenders S, Gerth VW. Relationship between nasal hyperreactivity, mediators and eosinophils in patients with perennial allergic rhinitis and controls. Clin Exp Allergy 1996; 26: 903 – 8.en_US
dc.identifier.citedreferenceCreticos PS, Peters SP, Adkinson NF, Jr. et al. Peptide leukotriene release after antigen challenge in patients sensitive to ragweed. N Engl J Med 1984; 310: 1626 – 30.en_US
dc.identifier.citedreferenceMiadonna A, Tedeschi A, Leggieri E et al. Behavior and clinical relevance of histamine and leukotrienes C4 and B4 in grass pollen-induced rhinitis. Am Rev Respir Dis 1987; 136: 357 – 62.en_US
dc.identifier.citedreferencePipkorn U, Proud D, Lichtenstein LM, Kagey-Sobotka A, Norman PS, Naclerio RM. Inhibition of mediator release in allergic rhinitis by pretreatment with topical glucocorticosteroids. N Engl J Med 1987; 316: 1506 – 10.en_US
dc.identifier.citedreferenceWang D, Clement P, Smitz J, De Waele M, Derde MP. Correlations between complaints, inflammatory cells and mediator concentrations in nasal secretions after nasal allergen challenge and during natural allergen exposure. Int Arch Allergy Immunol 1995; 106: 278 – 85.en_US
dc.identifier.citedreferenceShaw RJ, Fitzharris P, Cromwell O, Wardlaw AJ, Kay AB. Allergen-induced release of sulphidopeptide leukotrienes (SRS-A) and LTB4 in allergic rhinitis. Allergy 1985; 40: 1 – 6.en_US
dc.identifier.citedreferenceOphir D, Fink A, Eliraz A, Tabachnik E, Bentwich Z. Allergen-induced leukotriene production by nasal mucosa and peripheral blood leukocytes. Arch Otolaryngol Head Neck Surg 1988; 114: 522 – 4.en_US
dc.identifier.citedreferenceSkoner DP, Lee L, Doyle WJ, Boehm S, Fireman P. Nasal physiology and inflammatory mediators during natural pollen exposure. Ann Allergy 1990; 65: 206 – 10.en_US
dc.identifier.citedreferenceVolovitz B, Osur SL, Bernstein JM, Ogra PL. Leukotriene C4 release in upper respiratory mucosa during natural exposure to ragweed in ragweed-sensitive children. J Allergy Clin Immunol 1988; 82: 414 – 8.en_US
dc.identifier.citedreferenceTogias AG, Naclerio RM, Peters SP et al. Local generation of sulfidopeptide leukotrienes upon nasal provocation with cold, dry air. Am Rev Respir Dis 1986; 133: 1133 – 7.en_US
dc.identifier.citedreferenceMachida I, Matsuse H, Kondo Y et al. Cysteinyl leukotrienes regulate dendritic cell functions in a murine model of asthma. J Immunol 2004; 172: 1833 – 8.en_US
dc.identifier.citedreferenceParameswaran K, Liang H, Fanat A, Watson R, Snider DP, O'Byrne PM. Role for cysteinyl leukotrienes in allergen-induced change in circulating dendritic cell number in asthma. J Allergy Clin Immunol 2004; 114: 73 – 9.en_US
dc.identifier.citedreferenceSaeki S, Matsuse H, Kondo Y et al. Effects of antiasthmatic agents on the functions of peripheral blood monocyte-derived dendritic cells from atopic patients. J Allergy Clin Immunol 2004; 114: 538 – 44.en_US
dc.identifier.citedreferenceSpanbroek R, Hildner M, Steinhilber D et al. 5-lipoxygenase expression in dendritic cells generated from CD34(+) hematopoietic progenitors and in lymphoid organs. Blood 2000; 96: 3857 – 65.en_US
dc.identifier.citedreferenceChibana K, Ishii Y, Asakura T, Fukuda T. Effect of cysteinyl leukotriene on the antigen presenting function of monocytes-derived dendritic cells. Am J Respir Crit Care Med 2004; 169: A62.en_US
dc.identifier.citedreferenceOkunishi K, Dohi M, Nakagome K, Tanaka R, Yamamoto K. A novel role of cysteinyl leukotrienes to promote dendritic cell activation in the antigen-induced immune responses in the lung. J Immunol 2004; 173: 6393 – 402.en_US
dc.identifier.citedreferenceRobbiani DF, Finch RA, Jager D, Muller WA, Sartorelli AC, Randolph GJ. The leukotriene C(4) transporter MRP1 regulates CCL19 (MIP-3beta, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 2000; 103: 757 – 68.en_US
dc.identifier.citedreferenceUeda T, Takeno S, Furukido K, Hirakawa K, Yajin K. Leukotriene receptor antagonist pranlukast suppresses eosinophil infiltration and cytokine production in human nasal mucosa of perennial allergic rhinitis. Ann Otol Rhinol Laryngol 2003; 112: 955 – 61.en_US
dc.identifier.citedreferenceKawano T, Matsuse H, Kondo Y et al. Cysteinyl leukotrienes induce nuclear factor kappa b activation and RANTES production in a murine model of asthma. J Allergy Clin Immunol 2003; 112: 411 – 9.en_US
dc.identifier.citedreferenceMenard G. Priming of alveolar macrophages by leukotriene D4; potentiation of inflammation. Am J Respir Cell Mol Biol 2000; 23: 572 – 7.en_US
dc.identifier.citedreferenceTogias AG. Systemic immunologic and inflammatory aspects of allergic rhinitis. J Allergy Clin Immunol 2000; 106: S247 – 50.en_US
dc.identifier.citedreferenceOkuda M, Watase T, Mezawa A, Liu CM. The role of leukotriene D4 in allergic rhinitis. Ann Allergy 1988; 60: 537 – 40.en_US
dc.identifier.citedreferenceBisgaard H, Olsson P, Bende M. Effect of leukotriene D4 on nasal mucosal blood flow, nasal airway resistance and nasal secretion in humans. Clin Allergy 1986; 16: 289 – 97.en_US
dc.identifier.citedreferenceDonnelly AL, Glass M, Minkwitz MC, Casale TB. The leukotriene D4-receptor antagonist, ICI 204,219, relieves symptoms of acute seasonal allergic rhinitis. Am J Respir Crit Care Med 1995; 151: 1734 – 9.en_US
dc.identifier.citedreferencePhilip G, Malmstrom K, Hampel FC et al. Montelukast for treating seasonal allergic rhinitis: a randomized, double-blind, placebo-controlled trial performed in the spring. Clin Exp Allergy 2002; 32: 1020 – 8.en_US
dc.identifier.citedreferenceNayak AS, Philip G, Lu S, Malice MP, Reiss TF. Montelukast Fall Rhinitis Investigator Group. Efficacy and tolerability of montelukast alone or in combination with loratadine in seasonal allergic rhinitis: a multicenter, randomized, double-blind, placebo-controlled trial performed in the fall. Ann Allergy Asthma Immunol 2002; 88: 592 – 600.en_US
dc.identifier.citedreferencevan Adelsberg J, Philip G, Menten J, Malice MP, Reiss TF. Flexible dosing of montelukast for treatment of seasonal allergic rhinitis: morning or evening. J Allergy Clin Immunol 2003; 111: S146.en_US
dc.identifier.citedreferencevan Adelsberg J, Philip G, Pedinoff AJ et al. Montelukast improves symptoms of seasonal allergic rhinitis over a 4-week treatment period. Allergy 2003; 58: 1268 – 76.en_US
dc.identifier.citedreferenceHsieh F. T helper cell type 2 cytokines coordinately regulate immunoglobin E-dependent cysteinyl leukotriene production by human cord blood-derived mast cells: profound induction of leukotriene C4 synthase expression by interleukin 4. J Exp Med 2001; 193: 123 – 33.en_US
dc.identifier.citedreferenceFriedmann PS, Perzanowska M, McGuire C et al. New therapeutic indications for Cys-LT-1 antagonists: atopic dermatitis and urticaria. Clin Exp Allergy Rev 2001; 1: 156 – 9.en_US
dc.identifier.citedreferenceNettis E, Dambra P, D'Oronzio L, Paola Loria M, Ferrannini A, Tursi A. Comparison of montelukast and fexofenadine for chronic idiopathic urticaria. Arch Dermatol 2001; 137: 99 – 100.en_US
dc.identifier.citedreferencePacor ML, Di Lorenzo G, Corrocher R. Efficacy of leukotriene receptor antagonist in chronic urticaria. A double-blind, placebo-controlled comparison of treatment with montelukast and cetirizine in patients with chronic urticaria with intolerance to food additive and/or acetylsalicylic acid. Clin Exp Allergy 2001; 31: 1607 – 14.en_US
dc.identifier.citedreferenceHsieh JC, Lue KH, Lai DS, Sun HL, Lin YH. A comparison of cetirizine and montelukast for treating childhood perennial allergic rhinitis. Pediatr Asthma Allergy Immunol 2004; 17: 59 – 69.en_US
dc.identifier.citedreferenceKurowski M, Kuna P, Gorski P. Montelukast plus cetirizine in the prophylactic treatment of seasonal allergic rhinitis: influence on clinical symptoms and nasal allergic inflammation. Allergy 2004; 59: 280 – 8.en_US
dc.identifier.citedreferenceEllis JL, Undem BJ. Role of peptidoleukotrienes in capsaicin-sensitive sensory fibre-mediated responses in guinea-pig airways. J Physiol 1991; 436: 469 – 84.en_US
dc.identifier.citedreferenceMcAlexander MA, Myers AC, Undem BJ. Inhibition of 5-lipoxygenase diminishes neurally evoked tachykinergic contraction of guinea pig isolated airway. J Pharmacol Exp Ther 1998; 285: 602 – 7.en_US
dc.identifier.citedreferenceSanico AM, Atsuta S, Proud D, Togias A. Plasma extravasation through neuronal stimulation in human nasal mucosa in the setting of allergic rhinitis. J Appl Physiol 1998; 84: 537 – 43.en_US
dc.identifier.citedreferenceSanico AM, Philip G, Proud D, Naclerio RM, Togias A. Comparison of nasal mucosal responsiveness to neuronal stimulation in non-allergic and allergic rhinitis: effects of capsaicin nasal challenge. Clin Exp Allergy 1998; 28: 92 – 100.en_US
dc.identifier.citedreferenceKonno A, Yamakoshi T, Usui N. Clinical evaluation of leukotriene antagonist, ONO-1078 (pranlukast hydrate), on perennial allergic rhinitis-a double-blind, comparative clinicolpharmacological study with placebo. J Clin Ther Med 1997; 13: 1921 – 39.en_US
dc.identifier.citedreferenceNumata T, Konno A, Yamakoshi T, Hanazawa T, Terada N, Nagata H. Comparative role of peptide leukotrienes and histamine in the development of nasal mucosal swelling in nasal allergy. Ann Otol Rhinol Laryngol 1999; 108: 467 – 73.en_US
dc.identifier.citedreferenceWu XQ, Myers AC, Reynolds CJ, Goldstone AC, Togias A, Sanico AM. Expression of cysteinyl leukotriene (Cys-LT) receptors 1 and 2 in the nasal mucosa in perennial allergic and non-allergic rhinosinusitis. J Allergy Clin Immunol 2005; 115: S56.en_US
dc.identifier.citedreferenceMeltzer EO. The prevalence and medical and economic impact of allergic rhinitis in the United States. J Allergy Clin Immunol 1997; 99: S805 – 28.en_US
dc.identifier.citedreferenceHenderson WR, Jr. The role of leukotrienes in inflammation. Ann Intern Med 1994; 121: 684 – 97.en_US
dc.identifier.citedreferenceHigashi N, Taniguchi M, Mita H, Ishii T, Akiyama K. Nasal blockage and urinary leukotriene E4 concentration in patients with seasonal allergic rhinitis. Allergy 2003; 58: 476 – 80.en_US
dc.identifier.citedreferenceTaylor GW, Taylor I, Black P et al. Urinary leukotriene E4 after antigen challenge and in acute asthma and allergic rhinitis. Lancet 1989; 1: 584 – 8.en_US
dc.identifier.citedreferenceKnapp HR. Reduced allergen-induced nasal congestion and leukotriene synthesis with an orally active 5-lipoxygenase inhibitor. N Engl J Med 1990; 323: 1745 – 8.en_US
dc.identifier.citedreferenceGrossman J, Ratner PH, Nathan R, Adelglass J, de Jong B. Pranlukast (ULTAIR, SB 205 312, ONO-1078), an oral leukotriene receptor antagonist, relieves symptoms in patients with seasonal allergic rhinitis (SAR). J Allergy Clin Immunol 1997; 99: S443.en_US
dc.identifier.citedreferenceLim MC, Taylor RM, Naclerio RM. The histology of allergic rhinitis and its comparison to cellular changes in nasal lavage. Am J Respir Crit Care Med 1995; 151: 136 – 44.en_US
dc.identifier.citedreferenceBascom R, Wachs M, Naclerio RM, Pipkorn U, Galli SJ, Lichtenstein LM. Basophil influx occurs after nasal antigen challenge: effects of topical corticosteroid pretreatment. J Allergy Clin Immunol 1988; 81: 580 – 9.en_US
dc.identifier.citedreferenceJuliusson S, Pipkorn U, Karlsson G, Enerback L. Mast cells and eosinophils in the allergic mucosal response to allergen challenge: changes in distribution and signs of activation in relation to symptoms. J Allergy Clin Immunol 1992; 90: 898 – 909.en_US
dc.identifier.citedreferencePipkorn U, Karlsson G, Enerback L. Secretory activity of nasal mucosal mast cells and histamine release in hay fever. Int Arch Allergy Appl Immunol 1988; 87: 349 – 60.en_US
dc.identifier.citedreferencePastorello EA, Riario-Sforza GG, Incorvaia C, Segala M, Fumagalli M, Gandini R. Comparison of rhinomanometry, symptom score, and inflammatory cell counts in assessing the nasal late-phase reaction to allergen challenge. J Allergy Clin Immunol 1994; 93: 85 – 92.en_US
dc.identifier.citedreferenceBentley AM, Jacobson MR, Cumberworth V et al. Immunohistology of the nasal mucosa in seasonal allergic rhinitis: increases in activated eosinophils and epithelial mast cells. J Allergy Clin Immunol 1992; 89: 877 – 83.en_US
dc.identifier.citedreferenceBusse W, Kraft M. Cysteinyl leukotrienes in allergic inflammation: strategic target for therapy. Chest 2005; 127: 1312 – 26.en_US
dc.identifier.citedreferenceSteinke JW, Borish L. The role of allergy in chronic rhinosinusitis. Immunol Allergy Clin North Am 2004; 24: 45 – 57.en_US
dc.identifier.citedreferenceDenburg JA, Keith PK. Systemic aspects of chronic rhinosinusitis. Immunol Allergy Clin North Am 2004; 24: 87 – 102.en_US
dc.identifier.citedreferenceBaatjes AJ, Sehmi R, Saito H et al. Anti-allergic therapies: effects on eosinophil progenitors. Pharmacol Ther 2002; 95: 63 – 72.en_US
dc.identifier.citedreferenceCyr MM, Denburg JA. Systemic aspects of allergic disease: the role of the bone marrow. Curr Opin Immunol 2001; 13: 727 – 32.en_US
dc.identifier.citedreferenceDenburg JA, Otsuka H, Ohnisi M, Ruhno J, Bienenstock J, Dolovich J. Contribution of basophil/mast cell and eosinophil growth and differentiation to the allergic tissue inflammatory response. Int Arch Allergy Appl Immunol 1987; 82: 321 – 6.en_US
dc.identifier.citedreferenceDenzlinger C, Kapp A, Grimberg M, Gerhartz HH, Wilmanns W. Enhanced endogenous leukotriene biosynthesis in patients treated with granulocyte-macrophage colony-stimulating factor. Blood 1990; 76: 1765 – 70.en_US
dc.identifier.citedreferenceBraccioni F, Gauvreau GM, Dorman SC, Inman MD, O'Byrne PM. A leukotriene antagonist, montelukast, reduces in vitro LTD4 increases in peripheral blood eosinophil progenitor colonies in atopic subjects. Paper presented at the European Respiratory Society Annual Congress 2001, Berlin, Germany, September 22–26, 2001 [CD-ROM] Abstract 3565 Accompanied European Respiratory Journal 18(4): October 2001.en_US
dc.identifier.citedreferenceStenke L, Mansour M, Reizenstein P, Lindgren JA. Stimulation of human myelopoiesis by leukotrienes B4 and C4: interactions with granulocyte-macrophage colony-stimulating factor. Blood 1993; 81: 352 – 6.en_US
dc.identifier.citedreferenceBoehmler AM, Denzlinger C, Mohle R. Cysteinyl leukotrienes are produced by human bone marrow cells and induce IL-3-dependent proliferaton of CD34+ hematopoietic progenitors. Blood 2002; 100, abstract 2873.en_US
dc.identifier.citedreferenceSaito H, Morikawa H, Howie K et al. Effects of a cysteinyl leukotriene receptor antagonist on eosinophil recruitment in experimental allergic rhinitis. Immunology 2004; 113: 246 – 52.en_US
dc.identifier.citedreferenceLindgren JA, Stenke L, Mansour M et al. Formation and effects of leukotrienes and lipoxins in human bone marrow. J Lipid Mediat 1993; 6: 313 – 20.en_US
dc.identifier.citedreferenceDenzlinger C. Biology and pathophysiology of leukotrienes. Crit Rev Oncol Hematol 1996; 23: 167 – 223.en_US
dc.identifier.citedreferenceFord-Hutchinson AW. Leukotriene C4 synthase and 5-lipoxygenase activating protein. Regulators of the biosynthesis of sulfido-leukotrienes. Ann NY Acad Sci 1994; 744: 78 – 83.en_US
dc.identifier.citedreferenceMohle R, Bautz F, Denzlinger C, Kanz L. Transendothelial migration of hematopoietic progenitor cells. Role of chemotactic factors. Ann NY Acad Sci 2001; 938: 26 – 34.en_US
dc.identifier.citedreferenceLee BJ, Naclerio RM, Bochner BS, Taylor RM, Lim MC, Baroody FM. Nasal challenge with allergen upregulates the local expression of vascular endothelial adhesion molecules. J Allergy Clin Immunol 1994; 94: 1006 – 16.en_US
dc.identifier.citedreferenceKanwar S, Johnston B, Kubes P. Leukotriene C4/D4 induces P-selectin and sialyl Lewis dependent alterations in leukocyte kinetics in vivo. Circ Res 1995; 77: 879 – 87.en_US
dc.identifier.citedreferencePedersen KE, Bochner BS, Undem BJ. Cysteinyl leukotrienes induce P-selectin expression in human endothelial cells via a non-cyslt1 receptor-mediated mechanism. J Pharmacol Exp Ther 1997; 281: 655 – 62.en_US
dc.identifier.citedreferenceSuzuki M, Kato M, Kimura H, Fujiu T, Morikawa A. Inhibition of human eosinophil activation by a cysteinyl leukotriene receptor antagonist (pranlukast; ONO-1078). J Asthma 2003; 40: 395 – 404.en_US
dc.identifier.citedreferenceNagata M, Saito K, Tsuchiya K, Sakamoto Y. Leukotriene D4 upregulates eosinophil adhesion via the cysteinyl leukotriene 1 receptor. J Allergy Clin Immunol 2002; 109: 676 – 80.en_US
dc.identifier.citedreferenceFregonese L, Silvestri M, Sabatini F, Rossi GA. Cysteinyl leukotrienes induce human eosinophil locomotion and adhesion molecule expression via a cyslT1 receptor-mediated mechanism. Clin Exp Allergy 2002; 32: 745 – 50.en_US
dc.identifier.citedreferenceNagata M, Sedgwick JB, Kita H, Busse WW. Granulocyte macrophage colony-stimulating factor augments ICAM-1 and VCAM-1 activation of eosinophil function. Am J Respir Cell Mol Biol 1998; 19: 158 – 66.en_US
dc.identifier.citedreferenceLaitinen LA, Laitinen A, Haahtela T, Vilkka V, Spur BW, Lee TH. Leukotriene E4 and granulocytic infiltration into asthmatic airways. Lancet 1993; 341: 989 – 90.en_US
dc.identifier.citedreferenceSpada C. Comparison of leukotriene B4 and D4 effects on human eosinophil and neutrophil motility in vitro. J Leukocyte Biol 1994; 55: 183 – 91.en_US
dc.identifier.citedreferenceSpada CS, Woodward DF, Hawley SB, Nieves AL. Leukotrienes cause eosinophil emigration into conjunctival tissue. Prostaglandins 1986; 31: 795 – 809.en_US
dc.identifier.citedreferenceSpada CS, Krauss AH, Nieves AL, Woodward DF. Effects of leukotrienes B4 (LTB4) and D4 (LTD4) on motility of isolated normodense human eosinophils and neutrophils. Adv Exp Med Biol 1997; 400B: 699 – 706.en_US
dc.identifier.citedreferenceVirchow JC, Jr., Faehndrich S, Nassenstein C, Bock S, Matthys H, Luttmann W. Effect of a specific cysteinyl leukotriene-receptor 1-antagonist (montelukast) on the transmigration of eosinophils across human umbilical vein endothelial cells. Clin Exp Allergy 2001; 31: 836 – 44.en_US
dc.identifier.citedreferenceAkaiwa M, Yu B, Umeshita-Suyama R et al. Localization of human interleukin 13 receptor in non-haematopoietic cells. Cytokine 2001; 13: 75 – 84.en_US
dc.identifier.citedreferenceKay AB, Meng Q, Barkans J et al. Leukotrienes (LT) C4, D4, E4 and histamine induce eotaxin expression by human endothelial cell line and human umbilical vein endothelial cells (HUVEC). J Allergy Clin Immunol 1999; 103: S203.en_US
dc.identifier.citedreferenceChibana K, Ishii Y, Asakura T, Fukuda T. Up-regulation of cysteinyl leukotriene 1 receptor by IL-13 enables human lung fibroblasts to respond to leukotriene C4 and produce eotaxin. J Immunol 2003; 170: 4290 – 5.en_US
dc.identifier.citedreferenceLee E, Robertson T, Smith J, Kilfeather S. Leukotriene receptor antagonists and synthesis inhibitors reverse survival in eosinophils of asthmatic individuals. Am J Respir Crit Care Med 2000; 161: 1881 – 6.en_US
dc.identifier.citedreferenceBecler K, Hakansson L, Rak S. Treatment of asthmatic patients with a cysteinyl leukotriene receptor-1 antagonist montelukast (Singulair), decreases the eosinophil survival-enhancing activity produced by peripheral blood mononuclear leukocytes in vitro. Allergy 2002; 57: 1021 – 8.en_US
dc.identifier.citedreferenceEvans CM, Fryer AD, Jacoby DB, Gleich GJ, Costello RW. Pretreatment with antibody to eosinophil major basic protein prevents hyperresponsiveness by protecting neuronal M2 muscarinic receptors in antigen-challenged guinea pigs. J Clin Invest 1997; 100: 2254 – 62.en_US
dc.identifier.citedreferenceRasp G, Thomas PA, Bujia J. Eosinophil inflammation of the nasal mucosa in allergic and non-allergic rhinitis measured by eosinophil cationic protein levels in native nasal fluid and serum. Clin Exp Allergy 1994; 24: 1151 – 6.en_US
dc.identifier.citedreferenceWang D, Clement P, Smitz J, Derde MP. Concentrations of chemical mediators in nasal secretions of patients with hay fever during natural allergen exposure. Acta Otolaryngol 1994; 114: 552 – 5.en_US
dc.identifier.citedreferenceTutluoglu B, Tosun GA, Akbas I, Yaman M. Effects of montelukast on serum ECP and bronchial hyperreactivity in mild asthmatics. Paper presented at the World Congress on Lung Health and 10th European Respiratory Society Annual Congress, Florence, Italy, August 30–September 3, 2000 [CD ROM] Accompanied European Respiratory Journal 17(3) 2000;Abstr.en_US
dc.identifier.citedreferenceVolovitz B, Tabachnik E, Nussinovitch M et al. Montelukast, a leukotriene receptor antagonist, reduces the concentration of leukotrienes in the respiratory tract of children with persistent asthma. J Allergy Clin Immunol 1999; 104: 1162 – 7.en_US
dc.identifier.citedreferenceOhshima N, Nagase H, Koshino T et al. A functional study on cysLT(1) receptors in human eosinophils. Int Arch Allergy Immunol 2002; 129: 67 – 75.en_US
dc.identifier.citedreferenceSaito K, Nagata M, Kikuchi I, Sakamoto Y. Leukotriene D4 and eosinophil transendothelial migration, superoxide generation, and degranulation via beta2 integrin. Ann Allergy Asthma Immunol 2004; 93: 594 – 600.en_US
dc.identifier.citedreferenceMcComas J, Noonan G, Philip G et al. Safety and tolerability of montelukast in patients with seasonal allergic rhinitis: adults and children as young as age 2 years. Ann Allergy Asthma Immunol 2003; 90: 131.en_US
dc.identifier.citedreferenceBusse WW, Lemanske RF, Jr. Asthma. N Engl J Med 2001; 344: 350 – 62.en_US
dc.identifier.citedreferenceRobinson DS, Hamid Q, Ying S et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 1992; 326: 298 – 304.en_US
dc.identifier.citedreferenceTohda Y. Effects of ONO-1078 (pranlukast) on cytokine production in peripheral blood mononuclear cells of patients with bronchial asthma. Clin Exp Allergy 1999; 29: 1532 – 6.en_US
dc.identifier.citedreferenceBandeira-Melo C, Hall JC, Penrose JF, Weller PF. Cysteinyl leukotrienes induce IL-4 release from cord blood-derived human eosinophils. J Allergy Clin Immunol 2002; 109: 975 – 9.en_US
dc.identifier.citedreferenceMellor EA, Austen KF, Boyce JA. Cysteinyl leukotrienes and uridine diphosphate induce cytokine generation by human mast cells through an interleukin 4-regulated pathway that is inhibited by leukotriene receptor antagonists. J Exp Med 2002; 195: 583 – 92.en_US
dc.identifier.citedreferenceStelmach I, Jerzynska J, Kuna P. A randomized, double-blind trial of the effect of glucocorticoid, antileukotriene and b-agonist treatment on IL-10 serum levels in children with asthma. Clin Exp Allergy 2002; 32: 264 – 9.en_US
dc.identifier.citedreferenceCiprandi G, Frati F, Marcucci F et al. Nasal cytokine modulation by montelukast in allergic children: a pilot study. Allerg Immunol (Paris) 2003; 35: 295 – 9.en_US
dc.identifier.citedreferenceStelmach I, Jerzynska J, Kuna P. A randomized, double-blind trial of the effect of treatment with montelukast on bronchial hyperresponsiveness and serum eosinophilic cationic protein (ECP), soluble interleukin 2 receptor (sIL-2R), IL-4, and soluble intercellular adhesion molecule 1 (sICAM-1) in children with asthma. J Allergy Clin Immunol 2002; 109: 257 – 63.en_US
dc.identifier.citedreferenceIchiyama T, Hasegawa S, Umeda M, Terai K, Matsubara T, Furukawa S. Pranlukast inhibits NF-kappa B activation in human monocytes/macrophages and T cells. Clin Exp Allergy 2003; 33: 802 – 7.en_US
dc.identifier.citedreferenceMaspero JF, Testa M, Bezdronik L, Braillard I, Ginaca A, Kohan M. Mononuclear cell cytokine expression in vitro and modulation by montelukast. J Allergy Clin Immunol 2000; 105: S25.en_US
dc.identifier.citedreferencePeters-Golden M, Bailie M, Marshall T et al. Protection from pulmonary fibrosis in leukotriene-deficient mice. Am J Respir Crit Care Med 2002; 165: 229 – 35.en_US
dc.identifier.citedreferenceTomari S, Matsuse H, Machida I et al. Pranlukast, a cysteinyl leukotriene receptor 1 antagonist, attenuates allergen-specific tumour necrosis factor alpha production and nuclear factor kappa B nuclear translocation in peripheral blood monocytes from atopic asthmatics. J Endocrinol 2003; 178: 37 – 43.en_US
dc.identifier.citedreferencePanettieri RA, Tan EML, Ciocca V, Luttmann MA, Leonard TB, Hay DWP. Effects of LTD4 on human airway smooth muscle cell proliferation, matrix expression, and contraction in vitro: differential sensitivity to cysteinyl leukotriene receptor antagonists. Am J Respir Cell Mol Biol 1998; 19: 453 – 61.en_US
dc.identifier.citedreferenceRajah R. Leukotriene D4 induces MMP-1, which functions as an IGFBP protease in human airway smooth muscle cells. Am J Lung Cell Mol Physiol 1996; 15: L1014 – 22.en_US
dc.identifier.citedreferenceCho SH, You HJ, Woo CH, Yoo YJ, Kim JH. Rac and protein kinase C-delta regulate ERKs and cytosolic phospholipase A2 in FcepsilonrI signaling to cysteinyl leukotriene synthesis in mast cells. J Immunol 2004; 173: 624 – 31.en_US
dc.identifier.citedreferenceBloemers SM, Verheule S, Peppelenbosch MP, Smit MJ, Tertoolen LG, de Laat S. Sensitization of the histamine H1 receptor by increased ligand affinity. J Biol Chem 1998; 273: 2249 – 55.en_US
dc.identifier.citedreferencePynaert G. CyslTs mediate histamine hypersensitivity ex vivo by increasing histamine receptor numbers. Mol Med 1999; 10: 685 – 92.en_US
dc.identifier.citedreferencePatrignani P, Modica R, Bertolero F, Patrono C. Differential effects of leukotriene C4 on endothelin-1 and prostacyclin release by cultured vascular cells. Pharmacol Res 1993; 27: 281 – 5.en_US
dc.identifier.citedreferenceWilson AM, Dempsey OJ, Sims EJ, Lipworth BJ. A comparison of topical budesonide and oral montelukast in seasonal allergic rhinitis and asthma. Clin Exp Allergy 2001; 31: 616 – 24.en_US
dc.identifier.citedreferenceSandrini A, Ferreira IM, Gutierrez C, Jardim JR, Zamel N, Chapman KR. Effect of montelukast on exhaled nitric oxide and nonvolatile markers of inflammation in mild asthma. Chest 2003; 124: 1341 – 9.en_US
dc.identifier.citedreferenceBisgaard H, Loland L, Anhoj J. NO in exhaled air of asthmatic children is reduced by the leukotriene receptor antagonist montelukast. Am J Respir Crit Care Med 1999; 160: 1227 – 31.en_US
dc.identifier.citedreferenceBratton DL, Lanz MJ, Miyazawa N, White CW, Silkoff PE. Exhaled nitric oxide before and after montelukast sodium therapy in school-age children with chronic asthma: a preliminary study. Pediatr Pulmonol 1999; 28: 402 – 7.en_US
dc.identifier.citedreferenceLarfars G, Lantoine F, Devynck MA, Palmblad J, Gyllenhammar H. Activation of nitric oxide release and oxidative metabolism by leukotrienes B4, C4, and D4 in human polymorphonuclear leukocytes. Blood 1999; 93: 1399 – 405.en_US
dc.identifier.citedreferenceMenard G, Bissonnette EY. Priming of alveolar macrophages by leukotriene D(4): potentiation of inflammation. Am J Respir Cell Mol Biol 2000; 23: 572 – 7.en_US
dc.identifier.citedreferenceRyoyama K, Nomura T, Nakamura S. Inhibition of macrophage nitric oxide production by arachidonate-cascade inhibitors. Cancer Immunol Immunother 1993; 37: 385 – 91.en_US
dc.identifier.citedreferenceOffer S, Shoseyov D, Bibi H, Eliraz A, Madar Z. A leukotriene receptor antagonist modulates iNos in the lung and in a leukotriene-free cell model. Nitric Oxide 2003; 9: 10 – 7.en_US
dc.identifier.citedreferenceCowburn A. IL-5 increases expression of 5-lipoxygenase-activating protein and translocates 5-lipoxygenase to the nucleus in human blood eosinophils. J Immunol 1999; 163: 456 – 65.en_US
dc.identifier.citedreferenceOchensberger B. Regulation of cytokine expression and leukotriene formation in human basophils by growth factors, chemokines and chemotatic agonists. Eur J Immunol 1999; 29: 11 – 22.en_US
dc.identifier.citedreferenceLie WJ, Homburg CH, Kuijpers TW et al. Regulation and kinetics of platelet-activating factor and leukotriene C4 synthesis by activated human basophils. Clin Exp Allergy 2003; 33: 1125 – 34.en_US
dc.identifier.citedreferenceSilberstein DS, Owen WF, Gasson JC et al. Enhancement of human eosinophil cytotoxicity and leukotriene synthesis by biosynthetic (recombinant) granulocyte-macrophage colony-stimulating factor. J Immunol 1986; 137: 3290 – 4.en_US
dc.identifier.citedreferenceScoggan KA, Ford-Hutchinson AW, Nicholson DW. Differential activation of leukotriene biosynthesis by granulocyte-macrophage colony-stimulating factor and interleukin-5 in an eosinophilic substrain of HL-60 cells. Blood 1995; 86: 3507 – 16.en_US
dc.identifier.citedreferenceBrock TG, McNish RW, Coffey MJ, Ojo TC, Phare SM, Peters-Golden M. Effects of granuloctye-macrophage colony-stimulating factor on eicosanoid production by mononuclear phagocytes. J Immunol 1996; 156: 2522 – 7.en_US
dc.identifier.citedreferenceCoffey MJ, Phare SM, Cinti S, Peters-Golden M, Kazanjian PH. Granulocyte-macrophage colony-stimulating factor upregulates reduced 5-lipoxygenase metabolism in peripheral blood monocytes and neutrophils in acquired immunodeficiency syndrome. Blood 1999; 94: 3897 – 905.en_US
dc.identifier.citedreferencePouliot M, McDonald PP, Borgeat P, McColl SR. Granulocyte/macrophage colony-stimulating factor stimulates the expression of the 5-lipoxygenase-activating protein (FLAP) in human neutrophils. J Exp Med 1994; 179: 1225 – 32.en_US
dc.identifier.citedreferenceThivierge M. IL-5 up-regulates cysteinyl leukotriene 1 receptor expression in HL-60 cells differentiated into eosinophils. J Immunol 2000; 165: 5221 – 6.en_US
dc.identifier.citedreferenceEspinosa K, Bosse Y, Stankova J, Rola-Pleszczynski M. CyslT1 receptor upregulation by TGF-beta and IL-13 is associated with bronchial smooth muscle cell proliferation in response to LTD4. J Allergy Clin Immunol 2003; 111: 1032 – 40.en_US
dc.identifier.citedreferenceVargaftig BB, Singer M. Leukotrienes mediate murine bronchopulmonary hyperreactivity, inflammation, and part of mucosal metaplasia and tissue injury induced by recombinant murine interleukin-13. Am J Respir Cell Mol Biol 2003; 28: 410 – 9.en_US
dc.identifier.citedreferenceSteinke JW, Crouse CD, Bradley D et al. Characterization of interleukin-4-stimulated nasal polyp fibroblasts. Am J Respir Cell Mol Biol 2004; 30: 212 – 9.en_US
dc.identifier.citedreferenceAmrani Y, Moore PE, Hoffman R, Shore SA, Panettieri RA, Jr. Interferon-gamma modulates cysteinyl leukotriene receptor-1 expression and function in human airway myocytes. Am J Respir Crit Care Med 2001; 164: 2098 – 101.en_US
dc.identifier.citedreferenceGronert K, Martinsson-Niskanen T, Ravasi S, Chiang N, Serhan CN. Selectivity of recombinant human leukotriene D(4), leukotriene B(4), and lipoxin A(4) receptors with aspirin-triggered 15-epi-LXA(4) and regulation of vascular and inflammatory responses. Am J Pathol 2001; 158: 3 – 9.en_US
dc.identifier.citedreferencePullerits T, Linden A, Malmhall C, Lotvall J. Effect of seasonal allergen exposure on mucosal IL-16 and CD4+ cells in patients with allergic rhinitis. Allergy 2001; 56: 871 – 7.en_US
dc.identifier.citedreferenceBandeira-Melo C, Sugiyama K, Woods LJ et al. IL-16 promotes leukotriene C4 and IL-4 release from human eosinophils via CD4- and autocrine CCR3-chemokine-mediated signaling. J Immunol 2002; 168: 4756 – 63.en_US
dc.identifier.citedreferenceSteinhilber D, Radmark O, Samuelsson B. Transforming growth factor beta upregulates 5-lipoxygenase activity during myeloid cell maturation. Proc Natl Acad Sci USA 1993; 90: 5984 – 8.en_US
dc.identifier.citedreferenceRiddick CA, Serio KJ, Hodulik CR, Ring WL, Regan MS, Bigby TD. TGF-beta increases leukotriene C4 synthase expression in the monocyte-like cell line, THP-1. J Immunol 1999; 162: 1101 – 7.en_US
dc.identifier.citedreferenceTakafuji S, Bischoff SC, De Weck AL, Dahinden CA. Opposing effects of tumor necrosis factor-alpha and nerve growth factor upon leukotriene C4 production by human eosinophils triggered with N-formyl-methionyl-leucyl-phenylalanine. Eur J Immunol 1992; 22: 969 – 74.en_US
dc.identifier.citedreferenceTamura N, Agrawal DK, Townley RG. Leukotriene C4 production from human eosinophils in vitro. Role of eosinophil chemotactic factors on eosinophil activation. J Immunol 1988; 141: 4291 – 7.en_US
dc.identifier.citedreferenceKanwar S, Johnston B, Kubes P. Leukotriene C4/D4 induces P-selectin and sialyl Lewis(x)-dependent alterations in leukocyte kinetics in vivo. Circ Res 1995; 77: 879 – 87.en_US
dc.identifier.citedreferenceYamamura H. Endothelin-1 induces release of histamine and leukotriene C4 from mouse bone marrow-derived mast cells. Eur J Pharm 1994; 257: 235 – 42.en_US
dc.identifier.citedreferenceCoffey MJ, Phare SM, Peters-Golden M. Interaction between nitric oxide, reactive oxygen intermediates, and peroxynitrite in the regulation of 5-lipoxygenase metabolism. Biochim Biophys Acta 2002; 1584: 81 – 90.en_US
dc.identifier.citedreferenceGilchrist M, McCauley SD, Befus AD. Expression, localization, and regulation of NOS in human mast cell lines: effects on leukotriene production. Blood 2004; 104: 462 – 9.en_US
dc.identifier.citedreferenceTogias A. H1-receptors: localization and role in airway physiology and in immune functions. J Allergy Clin Immunol 2003; 112: S60 – 8.en_US
dc.identifier.citedreferenceAkdis CA, Blaser K. Histamine in the immune regulation of allergic inflammation. J Allergy Clin Immunol 2003; 112: 15 – 22.en_US
dc.identifier.citedreferenceWilson AM, O'Byrne PM, Parameswaran K. Leukotriene receptor antagonists for allergic rhinitis: a systematic review and meta-analysis. Am J Med 2004; 116: 338 – 44.en_US
dc.identifier.citedreferenceWarner JO, ETAC Study Group. A double-blinded, randomized, placebo-controlled trial of cetirizine in preventing the onset of asthma in children with atopic dermatitis: 18 months treatment and 18 months posttreatment follow-up. J Allergy Clin Immunol 2001; 108: 929 – 37.en_US
dc.identifier.citedreferenceMacGlashan DW, Jr., Schleimer RP, Peters SP et al. Comparative studies of human basophils and mast cells. Fed Proc 1983; 42: 2504 – 9.en_US
dc.identifier.citedreferenceSchleimer RP, Davidson DA, Peters SP, Lichtenstein LM. Inhibition of human basophil leukotriene release by antiinflammatory steroids. Int Arch Allergy Appl Immunol 1985; 77: 241 – 3.en_US
dc.identifier.citedreferenceOchensberger B, Tassera L, Bifrare D, Rihs S, Dahinden CA. Regulation of cytokine expression and leukotriene formation in human basophils by growth factors, chemokines and chemotactic agonists. Eur J Immunol 1999; 29: 11 – 22.en_US
dc.identifier.citedreferenceSjostrom M, Jakobsson PJ, Juremalm M et al. Human mast cells express two leukotriene C(4) synthase isoenzymes and the cysLT(1) receptor. Biochim Biophys Acta 2002; 1583: 53 – 62.en_US
dc.identifier.citedreferenceSchleimer RP, MacGlashan DW, Jr., Peters SP, Pinckard RN, Adkinson NF, Jr., Lichtenstein LM. Characterization of inflammatory mediator release from purified human lung mast cells. Am Rev Respir Dis 1986; 133: 614 – 7.en_US
dc.identifier.citedreferencePeters SP, MacGlashan DW, Jr., Schleimer RP, Hayes EC, Adkinson NF, Jr., Lichtenstein LM. The pharmacologic modulation of the release of arachidonic acid metabolites from purified human lung mast cells. Am Rev Respir Dis 1985; 132: 367 – 73.en_US
dc.identifier.citedreferenceShichijo M, Inagaki N, Nakai N et al. The effects of anti-asthma drugs on mediator release from cultured human mast cells. Clin Exp Allergy 1998; 28: 1228 – 36.en_US
dc.identifier.citedreferenceGoldyne ME, Burrish GF, Poubelle P, Borgeat P. Arachidonic acid metabolism among human mononuclear leukocytes. Lipoxygenase-related pathways. J Biol Chem 1984; 259: 8815 – 9.en_US
dc.identifier.citedreferenceWilliams JD, Czop JK, Austen KF. Release of leukotrienes by human monocytes on stimulation of their phagocytic receptor for particulate activators. J Immunol 1984; 132: 3034 – 40.en_US
dc.identifier.citedreferenceVirchow JC. Effect of a specific cysteinyl leukotriene-receptor 1-antagonist (montelukast) on the transmigration of eosinophils across human umbilical vein endothelial cells. Clin Exp Allergy 2001; 31: 836 – 44.en_US
dc.identifier.citedreferenceWeller FR. Generation and metabolism of 5-LO pathway leukotrienes by human eosinophils: predominant production of LTC4. Proc Natl Acad Sci USA 1983; 80: 7626 – 30.en_US
dc.identifier.citedreferenceShaw RJ, Walsh GM, Cromwell O, Moqbel R, Spry CJ, Kay AB. Activated human eosinophils generate SRS-A leukotrienes following IGG-dependent stimulation. Nature 1985; 316: 150 – 2.en_US
dc.identifier.citedreferenceShindo K, Harai Y, Koide K, Sumitomo M, Fukumura M. In vivo effect of prednisolone on release of leukotriene C4 in eosinophils obtained from asthmatic patients. Biochem Biophys Res Commun 1995; 214: 869 – 74.en_US
dc.identifier.citedreferenceOwen WF, Jr., Soberman RJ, Yoshimoto T, Sheffer AL, Lewis RA, Austen KF. Synthesis and release of leukotriene C4 by human eosinophils. J Immunol 1987; 138: 532 – 8.en_US
dc.identifier.citedreferenceHodges MK, Weller PF, Gerard NP, Ackerman SJ, Drazen JM. Heterogeneity of leukotriene C4 production by eosinophils from asthmatic and from normal subjects. Am Rev Respir Dis 1988; 138: 799 – 804.en_US
dc.identifier.citedreferenceHarizi H, Juzan M, Pitard V, Moreau JF, Gualde N. Cycloxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J Immunol 2002; 168: 2255 – 63.en_US
dc.identifier.citedreferenceLotzer K, Spanbroek R, Hildner M et al. Differential leukotriene receptor expression and calcium responses in endothelial cells and macrophages indicate 5-lipoxygenase-dependent circuits of inflammation and atherogenesis. Arterioscler Thromb Vasc Biol 2003; 23: e32 – 6.en_US
dc.identifier.citedreferenceSpinozzi F, Russano AM, Piattoni S et al. Biological effects of montelukast, a cysteinyl-leukotriene receptor-antagonist, on T lymphocytes. Clin Exp Allergy 2004; 34: 1876 – 82.en_US
dc.identifier.citedreferenceCifone MG, Cironi L, Santoni A, Testi R. Diacylglycerol lipase activation and 5-lipoxygenase activation and translocation following TCR/CD3 triggering in T cells. Eur J Immunol 1995; 25: 1080 – 6.en_US
dc.identifier.citedreferenceBorgeat P, Samuelsson B. Arachidonic acid metabolism in polymorphonuclear leukocytes: unstable intermediate in formation of dihydroxy acids. Proc Natl Acad Sci USA 1979; 76: 3213 – 7.en_US
dc.identifier.citedreferenceMcKinnon KP, Madden MC, Noah TL, Devlin RB. In vitro ozone exposure increases release of arachidonic acid products from a human bronchial epithelial cell line. Toxicol Appl Pharmacol 1993; 118: 215 – 23.en_US
dc.identifier.citedreferenceSjostrom M, Jakobsson PJ, Heimburger M, Palmblad J, Haeggstrom JZ. Human umbilical vein endothelial cells generate leukotriene C4 via microsomal glutathione S-transferase type 2 and express the cysLT(1) receptor. Eur J Biochem 2001; 268: 2578 – 86.en_US
dc.identifier.citedreferenceRamis I, Catafau JR, Serra J, Bulbena O, Picado C, Gelpi E. In vivo release of 15-HETE and other arachidonic acid metabolites in nasal secretions during early allergic reactions. Prostaglandins 1991; 42: 411 – 20.en_US
dc.identifier.citedreferenceWang D, Clement P, Smitz J, Derde MP. Concentrations of chemical mediators in nasal secretions after nasal allergen challenges in atopic patients. Eur Arch Otorhinolaryngol 1995; 252: S40 – 3.en_US
dc.identifier.citedreferenceWang D, Duyck F, Smitz J, Clement P. Efficacy and onset of action of fluticasone propionate aqueous nasal spray on nasal symptoms, eosinophil count, and mediator release after nasal allergen challenge in patients with seasonal allergic rhinitis. Allergy 1998; 53: 375 – 82.en_US
dc.identifier.citedreferenceTerada N, Ando H, Ito E et al. Nasal allergy and leukotriene. 2. Kinetics of peptide leukotrienes and inflammatory cells in nasal lavage fluid after antigen challenge. Nippon Jibiinkoka Gakkai Kaiho 1989; 92: 1337 – 44.en_US
dc.identifier.citedreferenceBisgaard H, Ford-Hutchinson AW, Charleson S, Taudorf E. Detection of leukotriene C4-liked immunoreactivity in tear fluid from subjects challenged with specific allergen. Prostaglandins 1984; 27: 369 – 74.en_US
dc.identifier.citedreferenceBisgaard H, Ford-Hutchinson AW, Charleson S, Taudorf E. Production of leukotrienes in human skin and conjunctival mucosa after specific allergen challenge. Allergy 1985; 40: 417 – 23.en_US
dc.identifier.citedreferenceKonno A, Numata T, Terada N, Hanazawa T, Nagata H, Motosugi H. Role of substance P in the vascular response of nasal mucosa in nasal allergy. Ann Otol Rhinol Laryngol 1996; 105: 648 – 53.en_US
dc.identifier.citedreferenceKojima T, Asakura K. The study of chemical mediators in the patients with allergic rhinitis. 2. Histamine, leukotriene and kinins in the nasal secretion during dual phase response. Nippon Jibiinkoka Gakkai Kaiho 1991; 94: 366 – 76.en_US
dc.identifier.citedreferenceMeltzer EO, Malmstrom K, Lu S et al. Concomitant montelukast and loratadine as treatment for seasonal allergic rhinitis: a randomized, placebo-controlled clinical trial. J Allergy Clin Immunol 2000; 105: 917 – 22.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.