Show simple item record

EVIDENCE FOR OVERDOMINANT SELECTION MAINTAINING X-LINKED FITNESS VARIATION IN DROSOPHILA MELANOGASTER

dc.contributor.authorConnallon, Timen_US
dc.contributor.authorKnowles, L. Laceyen_US
dc.date.accessioned2010-06-01T22:27:07Z
dc.date.available2010-06-01T22:27:07Z
dc.date.issued2006-07en_US
dc.identifier.citationConnallon, Tim; Knowles, L. Lacey (2006). "EVIDENCE FOR OVERDOMINANT SELECTION MAINTAINING X-LINKED FITNESS VARIATION IN DROSOPHILA MELANOGASTER ." Evolution 60(7): 1445-1453. <http://hdl.handle.net/2027.42/75442>en_US
dc.identifier.issn0014-3820en_US
dc.identifier.issn1558-5646en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75442
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16929661&dopt=citationen_US
dc.description.abstractThe role of balancing selection in maintaining genetic variation for fitness is largely unresolved. This reflects the inherent difficult in distinguishing between models of recurrent mutation versus selection, which produce similar patterns of inbreeding depression, as well as the limitations of testing such hypotheses when fitness variation is averaged across the genome. Signatures of X-linked overdominant selection are less likely to be obscured by mutational variation because X-linked mutations are rapidly eliminated by purifying selection in males. Although models maintaining genetic variation for fitness are not necessarily mutually exlusive, a series of predictins for identifying X-linked overdominant selection can be used to separate its contribution from other underlying processes. We consider the role of overdominant selection in maintaining fitness variation in a sample of 12 X chromosomes from a population of Drosophila melanogaster. Substantial variation was observed for male reproductive success and female fecundity, with heterozygous-X genotypes exhibiting the greatest gegree of variance, a finding that agress well with predictions of the overdominance model. The importance of X-linked overdominant selection is discussed along with models of recurrent mutation and sexually antagonistic selection.en_US
dc.format.extent133054 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2006 The Society for the Study of Evolutionen_US
dc.subject.otherBalancing Selectionen_US
dc.subject.otherFitness Variationen_US
dc.subject.otherOverdominant Selectionen_US
dc.subject.otherSex-by-Genotype Interactionen_US
dc.subject.otherSexual Antagonismen_US
dc.subject.otherX Chromosomeen_US
dc.titleEVIDENCE FOR OVERDOMINANT SELECTION MAINTAINING X-LINKED FITNESS VARIATION IN DROSOPHILA MELANOGASTERen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology of Evolutionary Biology and Museum of Zoology, 2019 Natural Science Building, 830 North Unversity, University of Michigan, Ann Arbor, Michigan 48109-1048en_US
dc.identifier.pmid16929661en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75442/1/j.0014-3820.2006.tb01223.x.pdf
dc.identifier.doi10.1111/j.0014-3820.2006.tb01223.xen_US
dc.identifier.sourceEvolutionen_US
dc.identifier.citedreferenceAulard, S., J. R. David, and F. Lemeunier. 2002. Chromosomal inversion polymorphism in Afrotropical populations of Drosophila melanogaster. Genet. Res. 79: 79 – 63.en_US
dc.identifier.citedreferenceBateman, A. J. 1948. Intrasexual selection in Drosophila. Heredity 2: 349 – 368.en_US
dc.identifier.citedreferenceBetancourt, A. J., Y. Kim, and H. A. Orr. 2004. A pseudohitchhiking model of X vs. autosomal diversity. Genetics 168: 2261 – 2269.en_US
dc.identifier.citedreferenceCharlesworth, B., and D. Charlesworth. 1999. The genetic basis of inbreeding depression. Genet. Res. 74: 329 – 340.en_US
dc.identifier.citedreferenceCharlesworth, B., and K. A. Hughes. 1999. The maintenance of genetic variation in life-history traits. Pp. 369 – 392 in R. S. Singh and C. B. Krimbas, eds. Evolutionary genetics: from molecules to morphology, 1. Cambridge Univ. Press, Cambridge, U.K.en_US
dc.identifier.citedreferenceCharlesworth, D., and B. Charlesworth. 1987. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18: 237 – 268.en_US
dc.identifier.citedreferenceChippindale, A. K., J. R. Gibson, and W. R. Rice. 2001. Negative genetic correlation for adult fitness between sexes reveals ontogenetic togenetic conflict in Drosophila. Proc. Natl. Acad. Sci. USA 98: 1671 – 1675.en_US
dc.identifier.citedreferenceCrow, J. F. 1993. Mutation, mean fitness, and genetic load. Pp. 3 – 42, in D. Futuyma and J. Antovics, eds. Oxford surveys in evolutionary biology. 9. Oxford Univ. Press, New York.en_US
dc.identifier.citedreferenceCrozier, R. H. 1976. Why male-haploid and sex-linked genetic systems seem to have unusually sex-limited mutational genetic loads. Evolution 30: 623 – 624.en_US
dc.identifier.citedreferenceEanes, W. F., J. Hey, and D. Houle. 1985. Homozygous and hemizygous viability variation on the X chromosome of Drosophila melanogaster. Genetics 111: 831 – 844.en_US
dc.identifier.citedreferenceFalconer, D. S., and T. F. C. Mackay. 1996. Introduction to quantitative genetics. 4th ed. Longman, Essex, U.K.en_US
dc.identifier.citedreferenceFisher, R. A. 1922. On the dominance ratio. Proc. R. Soc. Edinburgh 52: 312 – 341.en_US
dc.identifier.citedreferenceFry, J. D. 2004. On the rate and linearity of viability declines in Drosophila mutation-accumulation experiments: genomic mutation rates and synergistic epistasis revisited. Genetics 166: 797 – 806.en_US
dc.identifier.citedreferenceGardner, M. P., K. Fowler, N. H. Barton, and L. Partridge. 2005. Genetic variation for total fitness in Drosophila melanogaster: complex yet replicable patterns. Genetics 169: 1553 – 1571.en_US
dc.identifier.citedreferenceGibson, J. R., A. K. Chippindale, and W. R. Rice. 2002. The X chromosome is a hot spot for sexually antagonistic fitness variation. Proc. R. Soc. Lond. B 269: 499 – 505.en_US
dc.identifier.citedreferenceGreenberg, R., and J. F. Crow. 1960. A comparison of the effect of lethal and detrimental chromosomes from Drosophila populations. Genetics 45: 1153 – 1163.en_US
dc.identifier.citedreferenceHartl, D. L., and A. G. Clark. 1997. Principles of population genetics. 3rd ed. Sinauer, Sunderland, MA.en_US
dc.identifier.citedreferenceHedrick, P. W. 1985. Genetics of populations. Jones and Bartlett, Boston, MA.en_US
dc.identifier.citedreferenceHedrick, P. W., and J. D. Parker. 1997. Evolutionary genetics and genetic variation of haplodiploids and X-linked genes. Annu. Rev. Ecol. Syst. 28: 55 – 83.en_US
dc.identifier.citedreferenceHolland, B. and W. R. Rice. 1999. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc. Natl. Acad. Sci. USA 96: 5083 – 5088.en_US
dc.identifier.citedreferenceHoule, D., and L. Rowe. 2003. Natural selection in a bottle. Am. Nat. 161: 50 – 67.en_US
dc.identifier.citedreferenceHughes, K. A., and B. Charlesworth. 1994. A genetic analysis of senescence in Drosophila. Nature 367: 64 – 66.en_US
dc.identifier.citedreferenceJames, J. W. 1973. Covariances between relatives due to sex-linked genes. Biometrics 29: 584 – 588.en_US
dc.identifier.citedreferenceLewontin, R. C. 1974. The genetic basis of evolutionary change. Columbia Univ. Press, New York.en_US
dc.identifier.citedreferenceMedawar, P. B. 1952. An unsolved problem of biology. Lewis, London.en_US
dc.identifier.citedreferenceMukai, T. 1969. Genetic structure of natural populations of Drosophila melanogaster. 7. Synergistic interaction of spontaneous mutant polygenes controlling viability. Genetics 61: 749 – 1969.en_US
dc.identifier.citedreferenceMukai, T., and O. Yamaguchi. 1974. The genetic structure of natural populations of Drosophila melanogaster. XI. Genetic variability in a local population. Genetics 76: 339 – 366.en_US
dc.identifier.citedreferenceO'Brien, R. G. 1981. A simple test for variance effects in experimental designs. Psych. Bull. 89: 570 – 574.en_US
dc.identifier.citedreferencePamilo, P. 1979. Genic variation at sex-linked loci: quantification of regular selection models. Hereditas 91: 129 – 133.en_US
dc.identifier.citedreferenceParisi, M., R. Nuttall, D. Naiman, G. Bouffard, J. Malley, J. Andrews, S. Eastman, and B. Oliver. 2003. Paucity of genes on the Drosophila X chromosome showing male-biased expression. Science 299: 697 – 700.en_US
dc.identifier.citedreferencePartridge, L. 1980. Mate choice increases a component of offspring fitness in fruit flies. Nature 283: 290 – 291.en_US
dc.identifier.citedreferencePromislow, D. E. L., M. Tatar, A. Khazaeli, and J. W. Curtsinger. 1996. Age-specific patterns of genetic variance in Drosophila melanogaster. I. Mortality. Genetics 143: 839 – 848.en_US
dc.identifier.citedreferenceRanz, J. M., C. I. Castillo-Davis, C. D. Meiklejohn, and D. L. Hartl. 2003. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300: 1742 – 1745.en_US
dc.identifier.citedreferenceRice, W. R. 1984. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38: 735 – 742.en_US
dc.identifier.citedreferenceRice, W. R. 2002. Experimental tests of the adaptive significance of sexual recombination. Nat. Rev. Genet. 3: 241 – 251.en_US
dc.identifier.citedreferenceRosa, J. M., S. Camacho, and A. Garcia-Dorado. 2005. A measure of the within-chromosopme epistasis of Drosophila viability. J. Evol. Biol. 18: 1130 – 1137.en_US
dc.identifier.citedreferenceSaccheri, I. J., H. D. Lloyd, S. J. Helyar, and P. M. Brakefield. 2005. Inbreeding uncovers fundamental differences in the genetic load affecting male and female fertility in a butterfly. Proc. R. Soc. Lond. B 272: 39 – 46.en_US
dc.identifier.citedreferenceSimmons, M. J., and J. F. Crow. 1977. Mutations affecting fitness in Drosophila populations. Ann. Rev. Genet. 11: 48 – 78.en_US
dc.identifier.citedreferenceSokal, R. R., and F. J. Rohlf. 1995. Biometry. 3rd ed. W. H. Freeman, New York.en_US
dc.identifier.citedreferenceTracey, M. L., and F. J. Ayala. 1974. Genetic load in natural populations: is it compatible with the hypothesis that many polymorphisms are maintained by natural selection ? Genetics 77: 569 – 589.en_US
dc.identifier.citedreferenceTrivers, R. L. 1972. Parental investment and reproductive success. Pp. 136 – 179 in B. Campbel, ed. Sexual selection and the descent of man. Aldine-Atherton, Chicago.en_US
dc.identifier.citedreferenceWilton, A. D., and J. A. Sved. 1979. X chromosomal heterosis in Drosophila melanogaster. Genet. Res. 34: 303 – 315.en_US
dc.identifier.citedreferenceZeh, J. A., and D. W. Zeh. 1996. The evolution of polyandry. I. Intragenomic conflict and genetic incompatibility. Proc. R. Soc. Lond. B 263: 1711 – 1717.en_US
dc.identifier.citedreferenceZhang, X.-S., and W. G. Hill. 2005. Genetic variability under mutation selection balance. Trends Ecol. Evol. 20: 468 – 470.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.