Show simple item record

Excitatory Amino Acids Contribute to the Pathogenesis of Perinatal Hypoxic-Ischemic Brain Injury

dc.contributor.authorBarks, John D. E.en_US
dc.contributor.authorSilverstein, Faye Sarahen_US
dc.date.accessioned2010-06-01T22:31:41Z
dc.date.available2010-06-01T22:31:41Z
dc.date.issued1992-07en_US
dc.identifier.citationBarks, John D.E.; Silverstein, Faye S. (1992). "Excitatory Amino Acids Contribute to the Pathogenesis of Perinatal Hypoxic-Ischemic Brain Injury." Brain Pathology 2(3): 235-243. <http://hdl.handle.net/2027.42/75512>en_US
dc.identifier.issn1015-6305en_US
dc.identifier.issn1750-3639en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75512
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=1343839&dopt=citationen_US
dc.format.extent1135447 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1992 The International Society of Neuropathologyen_US
dc.titleExcitatory Amino Acids Contribute to the Pathogenesis of Perinatal Hypoxic-Ischemic Brain Injuryen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pediatrics, University of Michigan, Ann Arbor, MI 48109-0570, U.S.A.en_US
dc.contributor.affiliationumDepartment of Neurology, University of Michigan, Ann Arbor, MI 48109-0570, U.S.A.en_US
dc.identifier.pmid1343839en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75512/1/j.1750-3639.1992.tb00697.x.pdf
dc.identifier.doi10.1111/j.1750-3639.1992.tb00697.xen_US
dc.identifier.sourceBrain Pathologyen_US
dc.identifier.citedreferenceChoi DW, Rothman SM ( 1990 ) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13: 171 – 182.en_US
dc.identifier.citedreferenceJorgensen MB, Diemer NH ( 1982 ) Selective neuron loss after cerebral ischemia in the rat: Possible role of transmitter glutamate. Acta Neurol Scand 66: 536 – 46.en_US
dc.identifier.citedreferenceSimon RR Swan JH, Griffiths T., Meldrum BS ( 1984 ) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226: 850 – 852.en_US
dc.identifier.citedreferenceWieloch T., Lindvall O., Blomqvist P., Gage F. ( 1984 ) Evidence for amelioration of ischemic neuronal damage in the hippocampal formation by lesions of the perforant path. Neurol Res 7: 24 – 26.en_US
dc.identifier.citedreferenceBenveniste H., Drejer J., Schousboe A., Diemer NH ( 1984 ) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369 – 1374.en_US
dc.identifier.citedreferenceHagberg H., Andersson P., Kjellmer I., Thiringer K., Thordstein M. ( 1987 ) Extracellular overflow of glutamate, aspartate, GABA, and taurine in cortex and basal ganglia of fetal lambs during hypoxia-ischemia. Neurosci Lett 768: 311 – 317.en_US
dc.identifier.citedreferenceMcDonald JW, Silverstein FS, Johnston MV ( 1987 ) MK-801 protects the neonatal brain from hypoxic-ischemic damage. Eur J Pharmacol 140: 359 – 361.en_US
dc.identifier.citedreferenceChoi DW ( 1990 ) Methods for antagonizing glutamate neurotoxicity. Cerebrovasc Brain Metab Rev 2: 105 – 147.en_US
dc.identifier.citedreferenceChoi DW ( 1990 ) Cerebral hypoxia: Some new approaches and unanswered questions. J Neurosci 10: 2493 – 2501.en_US
dc.identifier.citedreferenceWatkins JC, Krogsgaard-Larsen P., Honore T. ( 1990 ) Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 11: 25 – 33.en_US
dc.identifier.citedreferenceLodge D., Johnson KM ( 1990 ) Noncompetitive excitatory amino acid receptor antagonists. Trends Pharmacol Sci 11: 81 – 86.en_US
dc.identifier.citedreferenceYoung AB, Fagg GE ( 1990 ) Excitatory amino acid receptors in the brain: Membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci 11: 126 – 133.en_US
dc.identifier.citedreferenceReynolds IJ, Miller RJ ( 1990 ) Allosteric modulation of N-methyl-D-aspartate receptors. Adv Pharmacol 21: 101 – 126.en_US
dc.identifier.citedreferenceWilliams K., Hanna JL, Molinoff PB ( 1991 ) Developmental changes in the sensitivity of the N-methyl-D-aspartate receptor to polyamines. Mo/ Pharmacol 40: 774 – 782.en_US
dc.identifier.citedreferenceKochhar A., Zivin JA, Lyden P., Mazzarella V. ( 1988 ) Glutamate antagonist therapy reduces neurologic deficits produced by focal central nervous system ischemia. Arch Neurol 45: 148 – 153.en_US
dc.identifier.citedreferencePark CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J. ( 1988 ) The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann Neurol 24: 543 – 551.en_US
dc.identifier.citedreferenceSimon R., Shiraishi K. ( 1990 ) N-methyl-D-aspartate antagonist reduces stroke size and glucose metabolism. Ann Neurol 27: 606 – 611.en_US
dc.identifier.citedreferenceBuchan A., Pulsinelli WA ( 1990 ) Hypothermia but not the N-methyl-D-aspartate antagonist, MK–801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci 10: 311 – 316.en_US
dc.identifier.citedreferenceLanier WL, Perkins WJ, Ruud B., Milde JH, Michenfelder JD ( 1990 ) The effect of dizocilipine maleate (MK-801), an antagonist of the N-methyl-D-aspartate receptor, on neurological recovery and histopathology following complete cerebral ischemia in primates. J Cereb Blood Flow Metab 10: 252 – 261.en_US
dc.identifier.citedreferenceOlney JW, Labruyere J., Price MT ( 1989 ) Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 244: 1360 – 1362.en_US
dc.identifier.citedreferenceOlney JW, Labruyere J., Wang G., Wozniak DF, Price MT, Sesma MA ( 1991 ) NMDA antagonist neurotoxicity: Mechanism and prevention. Science 254: 1515 – 1518.en_US
dc.identifier.citedreferenceSheardown MJ, Nielsen EO, Hansen AJ, Jacobsen P., Honore T. ( 1990 ) 2,3-Dihydroxy–6-nitro–7-sulfamoyl-benzo (F)quinoxaline: A neuroprotectant for cerebral ischemia. Science 247: 571 – 574.en_US
dc.identifier.citedreferenceJudge ME, Sheardown MJ, Jacobsen P., Honore T. ( 1991 ) Protection against postischemic behavioral pathology by the alpha-amino-3-hydroxy-5-methyl–4-isoxazoIepropionic acid (AMPA) antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f) quinoxaline (NBQX) in the gerbil. Neurosci Lett 133: 291 – 294.en_US
dc.identifier.citedreferenceBuchan AM, Li H., Cho S., Pulsinelli WA ( 1991 ) Blockade of the AMPA receptor prevents CA1 hippocampal injury following severe but transient forebrain ischemia in adult rats. Neurosci Lett 132: 255 – 258.en_US
dc.identifier.citedreferencePellegrini-Giampietro DE, Bennett MV, Zukin RS ( 1991 ) Differential expression of three glutamate receptor genes in developing rat brain: An in situ hybridization study. Proc Natl Acad Sci USA 88: 4157 – 4161.en_US
dc.identifier.citedreferenceRothman SM, Olney JW ( 1986 ) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19: 105 – 111.en_US
dc.identifier.citedreferenceChoi DW ( 1987 ) Ionic dependence of glutamate neurotoxicity. J Neurosci 7: 369 – 379.en_US
dc.identifier.citedreferenceUematsu D., Greenberg JH, Arali N., Reivich M. ( 1991 ) Mechanism underlying protective effect of MK-801 against NMDA-induced neuronal injury in vivo. J Cereb Blood Flow Metab 11: 779 – 785.en_US
dc.identifier.citedreferenceNovelli A., Reilly JA, Lysko PG, Henneberry RC ( 1988 ) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451: 205 – 212.en_US
dc.identifier.citedreferenceBeal MF ( 1992 ) Does impairment of energy metabolism result in axcitotoxic neuronal death in neurodegenerative diseases. Ann Neurol 31: 119 – 130.en_US
dc.identifier.citedreferenceLazarewicz JW, Wroblewski JT, Palmer ME, Costa E. ( 1988 ) Activation of N-methyl-D-aspartate-sensitive glutamate receptors stimulates arachidonic acid release in primary cultures of cerebellar granule cells. Neuropharmacology 27: 765 – 769.en_US
dc.identifier.citedreferenceYu AC, Chan PH, Fishman RA ( 1986 ) Effects of arachidonic acid on glutamate and gamma-aminobutyric acid uptake in primary cultures of rat cerebral cortical astrocytes and neurons. J Neurochem 47: 1181 – 1189.en_US
dc.identifier.citedreferenceMarkwell MAK, Berger SP, Paul SM ( 1990 ) The polyamine synthesis inhibitor alpha-difluoromethylornithine blocks NMDA-induced neurotoxicity. Eur J Pharm 182: 607 – 609.en_US
dc.identifier.citedreferencePorcella A., Fage D., Voltz C., Carter C., Scatton B., Bartholini G. ( 1991 ) Difluoromethyl ornithine protects against the neurotoxic effects of intrastriatally administered N-methyl-D-aspartate in vivo. Eur J Pharm 199: 267 – 269.en_US
dc.identifier.citedreferenceGarthwaite J., Charles SL, Chess-Williams R. ( 1988 ) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336: 385 – 388.en_US
dc.identifier.citedreferenceDawson VL, Dawson TM, London ED, Bredt DS, Snyder SH ( 1991 ) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88: 6386 – 6371.en_US
dc.identifier.citedreferenceNowicki JP, Duval D., Poignet H. Scatton B. ( 1991 ) Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur J Pharmacol 204: 339 – 340.en_US
dc.identifier.citedreferenceMcDonald JW, Silverstein FS, Johnston MV ( 1988 ) Neurotoxicity of NMDA is markedly enhanced in developing rat central nervous system. Brain Res 459: 200 – 203.en_US
dc.identifier.citedreferenceIkonomidou C., Mosinger JL, Salles KS, Labruyere J., Olney JW ( 1989 ) Sensitivity of the developing rat brain to hypo-baric/ischemic damage parallels sensitivity to N-methyl-aspartate toxicity. J Neurosci 9: 2809 – 2818.en_US
dc.identifier.citedreferenceZaczek R., Coyle JT ( 1982 ) Excitatory amino acid analogues: Neurotoxicity and seizures. Neuropharmacology 21: 15 – 26.en_US
dc.identifier.citedreferenceSilverstein FS, Chen R., Johnston MV ( 1986 ) The glutamate analogue quisqualic acid is neurotoxic in striatum and hippocampus of immature rat brain. Neurosci Lett 71: 13 – 18.en_US
dc.identifier.citedreferenceYoung RS, Petroff OA, Aquila WJ, Yates J. ( 1991 ) Effects of glutamate, quisqualate and N-methyl-D-aspartate in neonatal brain. Exp Neurol 111: 362 – 368.en_US
dc.identifier.citedreferenceTremblay E., Roisin MP, Represa A., Charriaut-Marlangue C., Ben-Ari Y. ( 1988 ) Transient increased density of NMDA binding sites in the developing rat hippocampus. Brain Res 461: 393 – 396.en_US
dc.identifier.citedreferenceMcDonald JW, Johnston MV, Young AB ( 1990 ) Differential ontogenic development of three receptors comprising the NMDA receptor/channel complex in the rat hippocampus. Exp Neurol 110: 237 – 247.en_US
dc.identifier.citedreferenceInsel TR, Miller LP, Gelhard RE ( 1990 ) The ontogeny of excitatory amino acid receptors in rat forebrain I. N-methyl-D-aspartate and quisqualate receptors. Neuroscience 35: 31 – 43.en_US
dc.identifier.citedreferenceMiller LP, Johnson AE, Gelhard RE, Insel TR ( 1990 ) The ontogeny of excitatory amino acid receptors in rat forebrain II. Kainic acid receptors. Neuroscience 35: 45 – 51.en_US
dc.identifier.citedreferenceHamon B., Heinemann U. ( 1988 ) Developmental changes in neuronal sensitivity to excitatory amino acids in area CA1 of the rat hippocampus. Brain Res 466: 286 – 290.en_US
dc.identifier.citedreferenceBowe MA, Nadler JV ( 1990 ) Developmental increase in the sensitivity to magnesium of NMDA receptors on CA1 hippocampal pyramidal cells. Dev Brain Res 56: 55 – 61.en_US
dc.identifier.citedreferenceKleckner NW, Dingledine R. ( 1991 ) Regulation of hippocampal NMDA receptors by magnesium and glycine during development. Brain Res 11: 151 – 159.en_US
dc.identifier.citedreferenceWasterlain CG, Hattori H., Yang C., Schwartz PH, Fujikawa DG, Morin AM, Dwyer BE ( 1990 ) Selective vulnerability of neuronal subpopulations during ontogeny reflects discrete molecular events associated with normal brain development. In: Neonatal Seizures, Wasterlain CG, Vert P., ( eds. ), pp. 69 – 81, Raven Press: New York.en_US
dc.identifier.citedreferenceRice JE, Vannucci RC, Brierley JB ( 1981 ) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9: 131 – 141.en_US
dc.identifier.citedreferenceSilverstein FS, Buchanan K., Johnston MV ( 1984 ) Pathogenesis of hypoxic-ischemic brain injury in a perinatal rodent model. Neurosci Lett 49: 271 – 277.en_US
dc.identifier.citedreferenceSilverstein FS, Buchanan K., Johnston MV ( 1986 ) Perinatal hypoxia ischemia disrupts striatal high affinity 3H-glutamate uptake into synaptosomes. J Neurochem 47: 1614 – 1619.en_US
dc.identifier.citedreferenceGordon KE, Simpson J., Statman D., Silverstein FS ( 1991 ) Effects of perinatal stroke on striatal amino acid efflux in rats studied with in vivo microdialysis. Stroke 22: 928 – 932.en_US
dc.identifier.citedreferenceHillered L., Hallstrom A., Segersvard S., Persson L., Unger-stedt U. ( 1989 ) Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J Cereb Blood Flow Metab 9: 607 – 616.en_US
dc.identifier.citedreferenceSilverstein FS, Naik B., Simpson J. ( 1991 ) Hypoxia-ischemia stimulates hippocampal glutamate efflux in perinatal rat brain: An in vivo microdialysis study. Pediatr Res 30: 587 – 590.en_US
dc.identifier.citedreferenceOliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA ( 1990 ) Oxidative damage to brian proteins, loss of glutamine synthase activity and production of freeradicals during ischernia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 87: 5144 – 5147.en_US
dc.identifier.citedreferenceJohnson JW, Ascher P. ( 1987 ) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325: 529 – 531.en_US
dc.identifier.citedreferenceAndine P., Sandberg M., Bagenholm R., Lehmann A., Hagberg H. ( 1991 ) Intracellular and extracellular change of amino acids in the cerebral cortex of the neonatal rat during hypoxic-ischemia. Dev Brain Res 64: 115 – 120.en_US
dc.identifier.citedreferenceBenveniste H., Jorgensen MB, Sandberg M., Christensen T., Hagberg H., Diemer NH. ( 1989 ) Ischemic damage in hippocampal CA1 is dependent on glutamate release and intact innervation from CA3. J Cereb Blood Flow Metab 9: 629 – 639.en_US
dc.identifier.citedreferenceGlobus MYT, Ginsberg MD, Dietrich WD, Busto R., Schienberg P. ( 1987 ) Substantia nigra lesion protects against ischemic damage in the striatum. Neurosci Lett 80: 251 – 256.en_US
dc.identifier.citedreferenceGlobus MYT, Busto R., Martinez E., Valdes I., Dietrich WD, Ginsberg MD ( 1991 ) Comparative effect of transient global ischemia on extracellular levels of glutamate, glycine and gamma-aminobutyric acid in vulnerable and non-vulnerable brain regions in the rat. J Neurochem 57: 470 – 478.en_US
dc.identifier.citedreferenceSilverstein FS, McDonald JW, Bommarito M., Johnston MV ( 1990 ) Effects of hypoxia-ischemia and MK-801 treatment on the binding of a phencyclidine analogue in the developing rat brain. Stroke 21: 310 – 315.en_US
dc.identifier.citedreferenceFord LM, Sanberg PR, Norman AB, Fogelson MH ( 1989 ) MK-801 prevents hippocampal neurodegeneration in neonatal hypoxic-ischemic rats. Arch Neurol 46: 1090 – 1096.en_US
dc.identifier.citedreferenceMcDonald JW, Silverstein FS, Cardona D., Hudson C., Chen R., Johnston MV ( 1990 ) Systemic administration of MK-801 protects against N-methyl-D-aspartate- and quisqualate-mediated neurotoxicity in perinatal rats. Neuroscience 36: 589 – 599.en_US
dc.identifier.citedreferenceOlney JW, Ikonomidou C., Mosinger JL, Frierdich G. ( 1989 ) MK-801 prevents hypobaric-ischemic neuronal degeneration in infant rat brain. J Neurosci 9: 1701 – 1704.en_US
dc.identifier.citedreferenceHattori H., Morin AM, Schwartz PH, Fujikawa DG, Wasterlain CG ( 1989 ) Posthypoxic treatment with MK-801 reduces hypoxic-ischemic damage in the neonatal rat. Neurology 39: 713 – 718.en_US
dc.identifier.citedreferenceChen CK, McDonald JW, Trescher WH, Johnston MV ( 1990 ) MK–801 transiently decreases cerebral temperature in perinatal rats. Soc Neurosci Abstr 16: 195.en_US
dc.identifier.citedreferenceHattori H., Wasterlain CG ( 1991 ) Hypothermia does not explain MK-801 neuroprotection in a rat model of neonatal hypoxic-ischemic encephalopathy. Neurology 41: 330.en_US
dc.identifier.citedreferenceSimon RP, Young RSK, Stout S., Cheng J. ( 1986 ) Inhibition of excitatory neurotransmission with kynurenate reduces brain edema in neonatal anoxia. Neurosci Lett 71: 361 – 364.en_US
dc.identifier.citedreferenceAndine P., Lehmann A., Ellren K., Wennberg E., Kjellmer I., Nielsen T., Hagberg H. ( 1988 ) The excitatory amino acid antagonist kynurenic acid administered after hypoxic-ischemia in neonatal rats offers neuroprotection. Neurosci Lett 90: 209 – 212.en_US
dc.identifier.citedreferencePrince DA, Feeser HR 1988 Dextromethorphan protects against cerebral infarction in a rat model of hypoxia-ischemia. Neurosci Lett 85: 291 – 296.en_US
dc.identifier.citedreferenceLeBlanc MH, Vig V., Smith B., Parker CC, Evans OB, Smith EE ( 1991 ) MK-801 does not protect against hypoxic-ischemic brain injury to piglets. Stroke 22: 1270 – 1275.en_US
dc.identifier.citedreferenceMosinger JL, Price MT, Bai HY, Xiao H., Wozniak DF, Olney JW ( 1991 ) Blockade of both NMDA and non-NMDA receptors is required for optimal neuroprotection against ischemic neuronal degeneration in the in vivo adult mammalian retina. Exp Neurol 113: 10 – 17.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.