Show simple item record

Ratiometric Singlet Oxygen Nano-optodes and Their Use for Monitoring Photodynamic Therapy Nanoplatforms

dc.contributor.authorCao, Youfuen_US
dc.contributor.authorKoo, Yong-Eun Leeen_US
dc.contributor.authorKoo, Sang Manen_US
dc.contributor.authorKopelman, Raoulen_US
dc.date.accessioned2010-06-01T22:32:26Z
dc.date.available2010-06-01T22:32:26Z
dc.date.issued2005-11en_US
dc.identifier.citationCao, Youfu; Koo, Yong-Eun Lee; Koo, Sang Man; Kopelman, Raoul (2005). "Ratiometric Singlet Oxygen Nano-optodes and Their Use for Monitoring Photodynamic Therapy Nanoplatforms." Photochemistry and Photobiology 81(6): 1489-1498. <http://hdl.handle.net/2027.42/75523>en_US
dc.identifier.issn0031-8655en_US
dc.identifier.issn1751-1097en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75523
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16107183&dopt=citationen_US
dc.description.abstractRatiometric photonic explorers for bioanalysis with biologically localized embedding (PEBBLE) nanoprobes have been developed for singlet oxygen, using organically modified silicate (ORMOSIL) nanoparticles as the matrix. A crucial aspect of these ratiometric singlet-oxygen fluorescent probes is their minute size. The ORMOSIL nanoparticles are prepared via a sol-gel–based process and the average diameter of the resultant particles is about 160 nm. These sensors incorporate the singlet-oxygen–sensitive 9,10-dimethyl anthracene as an indicator dye and a singlet-oxygen–insensitive dye, octaethylporphine, as a reference dye for ratiometric fluorescence-based analysis. We have found experimentally that these nanoprobes have much better sensitivity than does the conventional singlet-oxygen–free dye probe, anthracene-9, 10-dipropionic acid disodium salt. The much longer lifetime of singlet oxygen in the ORMOSIL matrix, compared to aqueous solutions, in addition to the relatively high singlet oxygen solubility because of the highly permeable structure and the hydrophobic nature of the outer shell of the ORMOSIL nanoparticles, results in an excellent overall response to singlet oxygen. These nanoprobes have been used to monitor the singlet oxygen produced by “dynamic nanoplatforms” that were developed for photodynamic therapy. The singlet oxygen nanoprobes could potentially be used to quantify the singlet oxygen produced by macrophages.en_US
dc.format.extent1233605 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2005 American Society for Photobiologyen_US
dc.titleRatiometric Singlet Oxygen Nano-optodes and Their Use for Monitoring Photodynamic Therapy Nanoplatformsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationotherLaboratory of Molecular Inorganic Advanced Materials, Department of Chemical Engineering, Ceramic Processing Research Center, Hanyang University, Seoul, Koreaen_US
dc.identifier.pmid16107183en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75523/1/2005-05-18-RA-532.pdf
dc.identifier.doi10.1562/2005-05-18-RA-532en_US
dc.identifier.sourcePhotochemistry and Photobiologyen_US
dc.identifier.citedreferenceSchweitzer, C. and R. Schmidt ( 2003 ) Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685 – 1757.en_US
dc.identifier.citedreferenceKrinsky, N. I. ( 1979 ) Biological roles of singlet oxygen. In Singlet Oxygen, Vol. 40 ( Edited by H. H. Wasserman ), pp. 597 – 641. Academic Press, New York.en_US
dc.identifier.citedreferenceSteinbeck, M. J., A. U. Khan and M. J. Karnovsky ( 1992 ) Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap. J. Biol. Chem. 267 ( 19 ), 13425 – 13433.en_US
dc.identifier.citedreferenceKanofsky, J. R., H. Hoogland, R. Wever and S. J. Weiss ( 1998 ) Singlet oxygen production by human eosinophils. J. Biol. Chem. 263 ( 20 ), 9692 – 9696.en_US
dc.identifier.citedreferenceRyter, S. W. and R. M. Tyrrell ( 1998 ) Singlet molecular oxygen 1 O 2: a possible effector of eukaryotic gene expression. Free Rad. Biol. Med. 24 ( 9 ), 1520 – 1534.en_US
dc.identifier.citedreferencePrein, M. and W. Adam ( 1996 ) The Schenck Ene reaction: diastereoselective oxyfunctionalization with singlet oxygen in synthetic applications. Angew. Chem. Int. editor. Engl. 35, 477 – 494.en_US
dc.identifier.citedreferenceHenderson, B. W. and T. J. Dougherty ( 1992 ), How does photodynamic therapy work? Photochem. Photobiol. 55, 145 – 157.en_US
dc.identifier.citedreferenceLevy, J. G. and M. Obochi ( 1996 ) New applications in photodynamic therapy. Photochem. Photobiol. 64, 737 – 739.en_US
dc.identifier.citedreferenceDougherty, T. J., C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng ( 1998 ) Review: photodynamic therapy. J. Nat. Cancer Inst. 90, 889 – 905.en_US
dc.identifier.citedreferenceFuchs, J. and J. Thiele ( 1998 ) The role of oxygen in cutaneous photodynamic therapy. Free Rad. Biol. Med. 24, 835 – 847.en_US
dc.identifier.citedreferenceOleinick, N. L. and H. H. Evans ( 1998 ) The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat. Res. 150, S146 – S156.en_US
dc.identifier.citedreferencePopovic, E. A., A. H. Kaye and J. S. Hill ( 1996 ) Photodynamic therapy of brain tumors. J. Clin. Laser Med. Surg. 14, 251 – 261.en_US
dc.identifier.citedreferenceWeishaupt, K. R., C. J. Gomer and T. J. Dougherty ( 1976 ) Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a marine tumor. Cancer Res. 36, 2326 – 2329.en_US
dc.identifier.citedreferenceBaker, A. and J. R. Kanofsky ( 1992 ) Quenching of singlet oxygen by biomolecules from L1210 leukemia cells. Photochem. Photobiol. 55, 523 – 528.en_US
dc.identifier.citedreferenceSkovsen, E., J. W. Snyder, J. Lambert and P. R. Ogilby ( 2005 ) Lifetime and diffusion of singlet oxygen in a cell. Phys. Chem. B 109, 8570 – 8573.en_US
dc.identifier.citedreferenceBaker, A. and J. R. Kanofsky ( 1991 ) Direct observation of singlet oxygen phosphorescence at 1270 nm from L1210 leukemia cells exposed to polyporphyrin and light. Arch. Biochem. Biophys. 186, 70 – 75.en_US
dc.identifier.citedreferenceBaker, A. and J. R. Kanofsky ( 1993 ) Time-resolved studies of singlet-oxygen emission from L1210 leukemia cells labeled with 5-(n-hexadecanoyl) amino eosin: a comparison with a one dimensional model of singlet oxygen diffusion and quenching. Photochem. Photobiol. 57, 720 – 727.en_US
dc.identifier.citedreferenceOelckers, S., T. Ziegler, I. Michler and B. Roder ( 1999 ) Time resolved detection of singlet oxygen luminescence in red-cell ghost suspensions: concerning a signal component that can be attributed to 1 O 2 luminescence from the inside of a native membrane. J. Photochem. Photobiol. B 53, 121 – 127.en_US
dc.identifier.citedreferenceNiedre, M., M. S. Patterson and B. C. Wilson ( 2002 ) Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo. Photochem. Photobiol. 75, 382 – 391.en_US
dc.identifier.citedreferenceLindig, B. A., A. J. Rodgers, and A. P. Schaap ( 1980 ) Determination of the lifetime of singlet oxygen in water-d2 using 9,10-anthracenedipropionic acid, a water-soluble probe. J. Am. Chem. Soc. 102, 5590 – 5593.en_US
dc.identifier.citedreferenceCastellano, F. N. and J. R. Lakowicz ( 1998 ) A water-soluble luminescence oxygen sensor. Photochem. Photobiol. 67, 179 – 183.en_US
dc.identifier.citedreferenceUmezawa, N., K. Tanaka, Y. Urano, K. Kikuchi, T. Higuchi and T. Nagano ( 1999 ) Novel fluorescent probes for singlet oxygen. Angew. Chem. Int. editor. 38, 2899 – 2901.en_US
dc.identifier.citedreferenceDrews, W., R. Schmidt and H. D. Brauer ( 1980 ) The photolysis of the endoperoxide of 9,10-diphenylanthracene. Chem. Phys. Lett. 70, 84 – 88.en_US
dc.identifier.citedreferenceClark, H., S. M. Barker, M. Brasuel, M. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle and M. A. Philbert ( 1998 ) Subcellular optochemical nanobiosensors: probes encapsulated by biologically localized embedding (PEBBLE). Sens. Acuators, B 51, 12 – 16.en_US
dc.identifier.citedreferenceMonson, E., M. Brasuel, M. Philbert and R. Kopelman ( 2003 ) Chapter 59, PEBBLE Nanosensors for in vitro bioanalysis. In Biomedical Photonics Handbook ( Edited by T. Vo-Dinh ), pp. 59-1 - 59-14. CRC Press, Boca Raton, FL.en_US
dc.identifier.citedreferenceKoo, Y., Y. F. Cao, R. Kopelman, S. M. Koo, M. Brasuel and M. A. Philbert ( 2004 ) Real-time measurements of dissolved oxygen inside live cells by Ormosil (organically modified silicate) fluorescent PEBBLE nanosensors. Anal. Chem. 76, 2498 – 2505.en_US
dc.identifier.citedreferenceTanaka, T., N. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi and T. Nagano ( 2001 ) Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen. J. Am. Chem. Soc. 123, 2530 – 2536.en_US
dc.identifier.citedreferenceTurro, N. J., M. F. Chow and J. Rigaudy ( 1979 ) Thermolysis of anthracene endoperoxides. concerted vs. diradical mechanisms, microscopic reversibility in endothermic chemiluminescent reactions. J. Am. Chem. Soc. 94, 7244 – 7255.en_US
dc.identifier.citedreferenceSteinbeck, M. J., A. U. Khan and M. J. Karnovsky ( 1993 ) Extracellular production of singlet oxygen by stimulated macrophages quantified using 9, 10-diphenylanthracene and perylene in a polystyrene film. J. Biol. Chem. 268 ( 21 ), 15649 – 15654.en_US
dc.identifier.citedreferenceMoreno, M. J., E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider and R. Kopelman ( 2003 ) Production of singlet oxygen by Ru(dpp(SO 3 ) 2 ) 3 incorporated in polyacrylamide PEBBLE. Sens. Actuators, B: Chemical 90, 82 – 89.en_US
dc.identifier.citedreferenceRoss, B., A. Rehemtulla, Y. E. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, M. A. Philbert, R. Weissleder and R. Kopelman ( 2004 ) Photonic and magnetic nanoexplorers for biomedical use: from subcellular imaging to cancer diagnostics and therapy. SPIE (International Society of Photonic Engineering) 5331, 76 – 83.en_US
dc.identifier.citedreferenceKopelman, R., Y. E. Koo, M. Philbert, B. A. Moffat, G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, M. S. Bhojani, S. M. Buck, A. Rehemtulla and B. D. Ross ( 2005 ) Multifunctional nano-particle platforms for in-vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J. Magnetism Magnetic Materials 293, 404 – 410.en_US
dc.identifier.citedreferenceXu, H., S. M. Buck, R. Kopelman, M. A. Philbert, M. Brasuel, B. Ross, A. Rehemtulla and J. Festschrift ( 2004 ) Photo-excitation based nanoexplorers: chemical analysis inside live cells and photodynamic therapy. Israel J. of Chem. 44, 317 – 337.en_US
dc.identifier.citedreferenceTang, W., H. Xu, M. Philbert and R. Kopelman ( 2005 ) Photodynamic characterization and in vitro application of MB-containing nanoparticle platforms. Photochem. Photobiol. 81 ( 2 ), 242 – 249.en_US
dc.identifier.citedreferenceDerossa, M. C. and R. J. Crutchley ( 2002 ) Photosensitized singlet oxygen and its applications. Coord. Chem. 233, 351 – 372.en_US
dc.identifier.citedreferenceAubry, J. M., C. Pierlot, J. Rigaudy and R. Schmidt ( 2003 ) Reversible binding of oxygen to aromatic compounds. Acc. Chem. Res 36, 668 – 675.en_US
dc.identifier.citedreference37. Notre Dame Radiation Laboratory ( 2005 ) NDRL radiation chemistry data center. Available at: http://www.rcdc.nd.edu/index.html. Accessed 5 October 2005.en_US
dc.identifier.citedreferenceYan, F. and R. Kopelman ( 2003 ) The embedding of metatetra(hydroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-dependent optical properties. Photochem. Photobiol. 78, 587 – 591.en_US
dc.identifier.citedreferenceJenny, T. and N. Turro ( 1982 ) Solvent and deuterium isotope effects on the lifetime of singlet oxygen determined by direct emission spectroscopy at 1.27 Μm. Tetrahedron Letters 23, 2923 – 2926.en_US
dc.identifier.citedreferenceTanielian, C., C. Schweitzer, R. Mechin and C. Wolff ( 2001 ) Quantum yield of singlet oxygen production by monomeric and aggregated forms of hematoporphyrin derivative. Free Rad. Biol. Med. 30 ( 2 ), 208 – 212.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.