Show simple item record

Polymerizing the fibre between bacteria and host cells: the biogenesis of functional amyloid fibres

dc.contributor.authorEpstein, Elisabeth Ashmanen_US
dc.contributor.authorChapman, Matthew R.en_US
dc.date.accessioned2010-06-01T22:34:08Z
dc.date.available2010-06-01T22:34:08Z
dc.date.issued2008-07en_US
dc.identifier.citationEpstein, Elisabeth Ashman; Chapman, Matthew R. (2008). "Polymerizing the fibre between bacteria and host cells: the biogenesis of functional amyloid fibres." Cellular Microbiology 10(7): 1413-1420. <http://hdl.handle.net/2027.42/75549>en_US
dc.identifier.issn1462-5814en_US
dc.identifier.issn1462-5822en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75549
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18373633&dopt=citationen_US
dc.description.abstractAmyloid fibres are proteinaceous aggregates associated with several human diseases, including Alzheimer's, Huntington's and Creutzfeldt Jakob's. Disease-associated amyloid formation is the result of proteins that misfold and aggregate into β sheet-rich fibre polymers. Cellular toxicity is readily associated with amyloidogenesis, although the molecular mechanism of toxicity remains unknown. Recently, a new class of ‘functional’ amyloid fibres was discovered that demonstrates that amyloids can be utilized as a productive part of cellular biology. These functional amyloids will provide unique insights into how amyloid formation can be controlled and made less cytotoxic. Bacteria produce some of the best-characterized functional amyloids, including a surface amyloid fibre called curli. Assembled by enteric bacteria, curli fibres mediate attachment to surfaces and host tissues. Some bacterial amyloids, like harpins and microcinE492, have exploited amyloid toxicity in a directed and functional manner. Here, we review and discuss the functional amyloids assembled by bacteria. Special emphasis will be paid to the biology of functional amyloid synthesis and the connections between bacterial physiology and pathology.en_US
dc.format.extent284679 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2008 Blackwell Publishing Ltden_US
dc.titlePolymerizing the fibre between bacteria and host cells: the biogenesis of functional amyloid fibresen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid18373633en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75549/1/j.1462-5822.2008.01148.x.pdf
dc.identifier.doi10.1111/j.1462-5822.2008.01148.xen_US
dc.identifier.sourceCellular Microbiologyen_US
dc.identifier.citedreferenceAlteri, C.J., Xicohtencatl-Cortes, J., Hess, S., Caballero-Olin, G., Giron, J.A., and Friedman, R.L. ( 2007 ) Mycobacterium tuberculosis produces pili during human infection. Proc Natl Acad Sci USA 104: 5145 – 5150.en_US
dc.identifier.citedreferenceArnqvist, A., Olsen, A., Pfeifer, J., Russell, D.G., and Normark, S. ( 1992 ) The Crl protein activates cryptic genes for curli formation and fibronectin binding in Escherichia coli HB101. Mol Microbiol 6: 2443 – 2452.en_US
dc.identifier.citedreferenceBarnhart, M.M., and Chapman, M.R. ( 2006 ) Curli biogenesis and function. Annu Rev Microbiol 60: 131 – 147.en_US
dc.identifier.citedreferenceBian, Z., and Normark, S. ( 1997 ) Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO J 16: 5827 – 5836.en_US
dc.identifier.citedreferenceBian, Z., Brauner, A., Li, Y., and Normark, S. ( 2000 ) Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J Infect Dis 181: 602 – 612.en_US
dc.identifier.citedreferenceBieler, S., Estrada, L., Lagos, R., Baeza, M., Castilla, J., and Soto, C. ( 2005 ) Amyloid formation modulates the biological activity of a bacterial protein. J Biol Chem 280: 26880 – 26885.en_US
dc.identifier.citedreferenceBokranz, W., Wang, X., Tschape, H., and Romling, U. ( 2005 ) Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med Microbiol 54: 1171 – 1182.en_US
dc.identifier.citedreferenceBrombacher, E., Dorel, C., Zehnder, A.J., and Landini, P. ( 2003 ) The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli. Microbiology 149: 2847 – 2857.en_US
dc.identifier.citedreferenceCaughey, B., and Lansbury, P.T. ( 2003 ) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26: 267 – 298.en_US
dc.identifier.citedreferenceChapman, M.R., Robinson, L.S., Pinkner, J.S., Roth, R., Heuser, J., Hammar, M., et al. ( 2002 ) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295: 851 – 855.en_US
dc.identifier.citedreferenceClaessen, D., Rink, R., de Jong, W., Siebring, J., de Vreugd, P., Boersma, F.G., et al. ( 2003 ) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17: 1714 – 1726.en_US
dc.identifier.citedreferenceClaessen, D., Stokroos, I., Deelstra, H.J., Penninga, N.A., Bormann, C., Salas, J.A., et al. ( 2004 ) The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol Microbiol 53: 433 – 443.en_US
dc.identifier.citedreferenceCollinson, S.K., Emody, L., Muller, K.H., Trust, T.J., and Kay, W.W. ( 1991 ) Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol 173: 4773 – 4781.en_US
dc.identifier.citedreferenceCollinson, S.K., Clouthier, S.C., Doran, J.L., Banser, P.A., and Kay, W.W. ( 1996 ) Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae. J Bacteriol 178: 662 – 667.en_US
dc.identifier.citedreferenceDestoumieux-Garzon, D., Thomas, X., Santamaria, M., Goulard, C., Barthelemy, M., Boscher, B., et al. ( 2003 ) Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Mol Microbiol 49: 1031 – 1041.en_US
dc.identifier.citedreferenceElghetany, M.T., and Saleem, A. ( 1988 ) Methods for staining amyloid in tissues: a review. Stain Technol 63: 201 – 212.en_US
dc.identifier.citedreferenceElliot, M.A., Karoonuthaisiri, N., Huang, J., Bibb, M.J., Cohen, S.N., Kao, C.M., and Buttner, M.J. ( 2003 ) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17: 1727 – 1740.en_US
dc.identifier.citedreferenceFernandez, L.A., and Berenguer, J. ( 2000 ) Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiol Rev 24: 21 – 44.en_US
dc.identifier.citedreferenceFowler, D.M., Koulov, A.V., Balch, W.E., and Kelly, J.W. ( 2007 ) Functional amyloid – from bacteria to humans. Trends Biochem Sci 32: 217 – 224.en_US
dc.identifier.citedreferenceGerstel, U., and Romling, U. ( 2003 ) The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Res Microbiol 154: 659 – 667.en_US
dc.identifier.citedreferenceGerstel, U., Park, C., and Romling, U. ( 2003 ) Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 49: 639 – 654.en_US
dc.identifier.citedreferenceGibson, D.L., White, A.P., Rajotte, C.M., and Kay, W.W. ( 2007 ) AgfC and AgfE facilitate extracellular thin aggregative fimbriae synthesis in Salmonella Enteritidis. Microbiology 153: 1131 – 1140.en_US
dc.identifier.citedreferenceGophna, U., Barlev, M., Seijffers, R., Oelschlager, T.A., Hacker, J., and Ron, E.Z. ( 2001 ) Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect Immun 69: 2659 – 2665.en_US
dc.identifier.citedreferenceHammar, M., Arnqvist, A., Bian, Z., Olsen, A., and Normark, S. ( 1995 ) Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18: 661 – 670.en_US
dc.identifier.citedreferenceHammar, M., Bian, Z., and Normark, S. ( 1996 ) Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci USA 93: 6562 – 6566.en_US
dc.identifier.citedreferenceHammer, N.D., Schmidt, J.C., and Chapman, M.R. ( 2007 ) The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc Natl Acad Sci USA 104: 12494 – 12499.en_US
dc.identifier.citedreferenceHeath, M.C. ( 2000 ) Hypersensitive response-related death. Plant Mol Biol 44: 321 – 334.en_US
dc.identifier.citedreferenceHetz, C., Bono, M.R., Barros, L.F., and Lagos, R. ( 2002 ) Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci USA 99: 2696 – 2701.en_US
dc.identifier.citedreferenceJohansson, C., Nilsson, T., Olsen, A., and Wick, M.J. ( 2001 ) The influence of curli, a MHC-I-binding bacterial surface structure, on macrophage–T cell interactions. FEMS Immunol Med Microbiol 30: 21 – 29.en_US
dc.identifier.citedreferenceJonson, A.B., Normark, S., and Rhen, M. ( 2005 ) Fimbriae, pili, flagella and bacterial virulence. Contrib Microbiol 12: 67 – 89.en_US
dc.identifier.citedreferenceKayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., and Glabe, C.G. ( 2003 ) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300: 486 – 489.en_US
dc.identifier.citedreferenceKayed, R., Head, E., Sarsoza, F., Saing, T., Cotman, C.W., Necula, M., et al. ( 2007 ) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2: 18.en_US
dc.identifier.citedreferenceKim, J.G., Jeon, E., Oh, J., Moon, J.S., and Hwang, I. ( 2004 ) Mutational analysis of Xanthomonas harpin HpaG identifies a key functional region that elicits the hypersensitive response in nonhost plants. J Bacteriol 186: 6239 – 6247.en_US
dc.identifier.citedreferenceKnobl, T., Baccaro, M.R., Moreno, A.M., Gomes, T.A., Vieira, M.A., Ferreira, C.S., and Ferreira, A.J. ( 2001 ) Virulence properties of Escherichia coli isolated from ostriches with respiratory disease. Vet Microbiol 83: 71 – 80.en_US
dc.identifier.citedreferenceLa Ragione, R.M., Coles, K.E., Jorgensen, F., Humphrey, T.J., and Woodward, M.J. ( 2001 ) Virulence in the chick model and stress tolerance of Salmonella enterica serovar Orion var. 15+. Int J Med Microbiol 290: 707 – 718.en_US
dc.identifier.citedreferenceLagos, R., Wilkens, M., Vergara, C., Cecchi, X., and Monasterio, O. ( 1993 ) Microcin E492 forms ion channels in phospholipid bilayer membrane. FEBS Lett 321: 145 – 148.en_US
dc.identifier.citedreferenceLagos, R., Villanueva, J.E., and Monasterio, O. ( 1999 ) Identification and properties of the genes encoding microcin E492 and its immunity protein. J Bacteriol 181: 212 – 217.en_US
dc.identifier.citedreferenceLarsen, P., Nielsen, J.L., Dueholm, M.S., Wetzel, R., Otzen, D., and Nielsen, P.H. ( 2007 ) Amyloid adhesins are abundant in natural biofilms. Environ Microbiol 9: 3077 – 3090.en_US
dc.identifier.citedreferenceLarsen, P., Nielsen, J.L., Otzen, D., and Nielsen, P.H. ( 2008 ) Amyloid-like adhesins in floc-forming and filamentous bacteria in activated sludge. Appl Environ Microbiol 74: 1517 – 1526.en_US
dc.identifier.citedreferenceLawley, T.D., Chan, K., Thompson, L.J., Kim, C.C., Govoni, G.R., and Monack, D.M. ( 2006 ) Genome-wide screen for salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2: e11.en_US
dc.identifier.citedreferenceLee, J., Klusener, B., Tsiamis, G., Stevens, C., Neyt, C., Tampakaki, A.P., et al. ( 2001 ) HrpZ (Psph) from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc Natl Acad Sci USA 98: 289 – 294.en_US
dc.identifier.citedreferenceLoferer, H., Hammar, M., and Normark, S. ( 1997 ) Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol Microbiol 26: 11 – 23.en_US
dc.identifier.citedreferenceNelson, R., Sawaya, M.R., Balbirnie, M., Madsen, A.O., Riekel, C., Grothe, R., and Eisenberg, D. ( 2005 ) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435: 773 – 778.en_US
dc.identifier.citedreferenceNordstedt, C., Naslund, J., Tjernberg, L.O., Karlstrom, A.R., Thyberg, J., and Terenius, L. ( 1994 ) The Alzheimer A beta peptide develops protease resistance in association with its polymerization into fibrils. J Biol Chem 269: 30773 – 30776.en_US
dc.identifier.citedreferenceOh, J., Kim, J.G., Jeon, E., Yoo, C.H., Moon, J.S., Rhee, S., and Hwang, I. ( 2007 ) Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria. J Biol Chem 282: 13601 – 13609.en_US
dc.identifier.citedreferenceOlsen, A., Jonsson, A., and Normark, S. ( 1989 ) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338: 652 – 655.en_US
dc.identifier.citedreferenceOlsen, A., Wick, M.J., Morgelin, M., and Bjorck, L. ( 1998 ) Curli, fibrous surface proteins of Escherichia coli, interact with major histocompatibility complex class I molecules. Infect Immun 66: 944 – 949.en_US
dc.identifier.citedreferenceOlsen, A., Herwald, H., Wikstrom, M., Persson, K., Mattsson, E., and Bjorck, L. ( 2002 ) Identification of two protein-binding and functional regions of curli, a surface organelle and virulence determinant of Escherichia coli. J Biol Chem 277: 34568 – 34572.en_US
dc.identifier.citedreferencePawar, D.M., Rossman, M.L., and Chen, J. ( 2005 ) Role of curli fimbriae in mediating the cells of enterohaemorrhagic Escherichia coli to attach to abiotic surfaces. J Appl Microbiol 99: 418 – 425.en_US
dc.identifier.citedreferenceRobinson, L.S., Ashman, E.M., Hultgren, S.J., and Chapman, M.R. ( 2006 ) Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol Microbiol 59: 870 – 881.en_US
dc.identifier.citedreferenceRomling, U. ( 2005 ) Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol Life Sci 62: 1234 – 1246.en_US
dc.identifier.citedreferenceRoss, C.A., and Poirier, M.A. ( 2004 ) Protein aggregation and neurodegenerative disease. Nat Med 10 ( Suppl. ): S10 – S17.en_US
dc.identifier.citedreferenceRyu, J.H., Kim, H., Frank, J.F., and Beuchat, L.R. ( 2004 ) Attachment and biofilm formation on stainless steel by Escherichia coli O157: H7 as affected by curli production. Lett Appl Microbiol 39: 359 – 362.en_US
dc.identifier.citedreferenceSunde, M., Serpell, L.C., Bartlam, M., Fraser, P.E., Pepys, M.B., and Blake, C.C. ( 1997 ) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273: 729 – 739.en_US
dc.identifier.citedreferenceUhlich, G.A., Cooke, P.H., and Solomon, E.B. ( 2006 ) Analyses of the red-dry-rough phenotype of an Escherichia coli O157: H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl Environ Microbiol 72: 2564 – 2572.en_US
dc.identifier.citedreferenceUhlich, G.A., Keen, J.E., and Elder, R.O. ( 2002 ) Variations in the csgD promoter of Escherichia coli O157: H7 associated with increased virulence in mice and increased invasion of HEp-2 cells. Infect Immun 70: 395 – 399.en_US
dc.identifier.citedreferenceWang, X., Smith, D.R., Jones, J.W., and Chapman, M.R. ( 2007 ) In vitro polymerization of a functional Escherichia coli amyloid protein. J Biol Chem 282: 3713 – 3719.en_US
dc.identifier.citedreferenceYoshiike, Y., Kayed, R., Milton, S.C., Takashima, A., and Glabe, C.G. ( 2007 ) Pore-forming proteins share structural and functional homology with amyloid oligomers. Neuromolecular Med 9: 270 – 275.en_US
dc.identifier.citedreferenceZogaj, X., Bokranz, W., Nimtz, M., and Romling, U. ( 2003 ) Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71: 4151 – 4158.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.