Show simple item record

HIV's evasion of the cellular immune response

dc.contributor.authorCollins, Kathleen L.en_US
dc.contributor.authorBaltimore, Daviden_US
dc.date.accessioned2010-06-01T22:35:28Z
dc.date.available2010-06-01T22:35:28Z
dc.date.issued1999-04en_US
dc.identifier.citationCollins, Kathleen L.; Baltimore, David (1999). "HIV's evasion of the cellular immune response." Immunological Reviews 168(1): 65-74. <http://hdl.handle.net/2027.42/75570>en_US
dc.identifier.issn0105-2896en_US
dc.identifier.issn1600-065Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75570
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=10399065&dopt=citationen_US
dc.description.abstractDespite a strong cytotoxic T-lymphocyte (CTL) response directed against viral antigens, untreated individuals infected with the human immunodeficiency virus (HIV-1) develop AIDS, We have found that primary T cells infected with HIV-1 downregulate surface MHC class I antigens and are resistant to lysis by HLA-A2-restricted CTL clones. In contrast, cells infected with an HIV-1 in which the nef gene is disrupted are sensitive to CTLs in an MHC and peptide-specific manner. In primary T cells HLA-A2 antigens are downmodulated more dramatically than total MHC class I antigens, suggesting that nef selectively downmodulates certain MHC class I antigens. In support of this, studies on ceils expressing individual MHC class I alietes have revealed that nef does not downmodulate HLA-C and HLA-E antigens, This selective downmodulation allows Infected cells to maintain resistance to certain natural killer cells that lyse infected cells expressing low levels of MHC class I antigens. Downmodulation of MHC class I HLA-A2 antigens occurs not only in primary T cells, but also in B and astrocytoma cell lines. No effect of other HIV-1 accessory proteins such as vpu and vpr was observed. Thus Nef is a protein that may promote escape of HIV-1 from immune surveillance.en_US
dc.format.extent4804612 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1999 Blackwell Munksgaarden_US
dc.titleHIV's evasion of the cellular immune responseen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Medicine and Microbiology & Immunology, The University of Michigan, Ann Arbor, Michigan, USA.en_US
dc.contributor.affiliationotherCalifornia Institute of Technology, Pasadena, California, USA.en_US
dc.identifier.pmid10399065en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75570/1/j.1600-065X.1999.tb01283.x.pdf
dc.identifier.doi10.1111/j.1600-065X.1999.tb01283.xen_US
dc.identifier.sourceImmunological Reviewsen_US
dc.identifier.citedreferenceBorrow P, Lewicki H, Halin B, Shaw G, Oldstone M. 1994. Virus-specific CD8 + cytotoxic-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol 1998; 68: 6103 – 6110.en_US
dc.identifier.citedreferenceKoup R et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 1 1994; 68: 4650 – 4655.en_US
dc.identifier.citedreferenceMellors, JW, Rinaldo, C, Gupta P, White RM, Todd JA, Kingsley LA. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 1996; 272: 1167 – 1170.en_US
dc.identifier.citedreferenceSaksela K, Stevens C, Rubinstein P, Baltimore D. Human immunodeficiency virus type 1 mRNA expression in peripheral blood cells predicts disease progression independently of the numbers of CD4 + lymphocytes. Proc Natl Acad Sci USA 1994; 3: 1104 – 1108.en_US
dc.identifier.citedreferenceSaksela K, Stevens C, Rubinstein P, Taylor P, Baltimore D. HIV-1 Messenger RNA in peripheral blood mononuclear cells as an early marker of risk for progression to AIDS. Ann Intern Med 1995; 123: 641 – 648.en_US
dc.identifier.citedreferenceFeinberg M, McLean A. AIDS: decline and fall of immune surveillance. Curr Biol 1997; 3: R136 – R140.en_US
dc.identifier.citedreferenceHo DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and lymphocytes in HIV-1 infection. Nature 1995; 373: 123 – 126.en_US
dc.identifier.citedreferenceWei X, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1997; 373: 117 – 122.en_US
dc.identifier.citedreferenceOhnimus H, Heinkelein M, Jassoy C. Apoptotic cell death upon contact of CD4 + T lymphocytes with HIV glycoprotein-expressing cells is mediated by caspases but bypasses CD9 S (Fas/Apo-1) and TNF receptor 1. J Immunol 1997; 159: 5246 – 5252.en_US
dc.identifier.citedreferenceOyaiizu N, McCloskey T, Coronesi M, Chirmule N, Kalyanaraman V, Pahwa S. Accelerated apoptosis in peripheral blood mononuclear cells (PBMCs) from human immunodeficiency virus type-1 infected patients and in CD4 cross-linked PBMCs from normal individuals. Blood 1993; 82: 3392 – 3400.en_US
dc.identifier.citedreferenceGroux H, Torpier G, Monte D, Mouton Y, Capron A, Ameisen J. Activation-induced death by apoptosis in CD4 + T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med 1992; 175: 331 – 340.en_US
dc.identifier.citedreferenceBerndt C, Mopps B, Angermuller S, Gierschik P, Krammer P. CXCR4 and CD4 mediate a rapid and CD95-independent cell death in CD4 + T cells. Proc Natl Acad Sci USA 1998; 95: 12556 – 12561.en_US
dc.identifier.citedreferenceMeyaard I, Otto S, Jonker R, Mijnster M, Keet R, Miedema F. Programmed death of T cells in HIV-1 infection. Science 1992; 257: 217 – 219.en_US
dc.identifier.citedreferenceGandhi R, Oien B, Straus S, Dale J, Lenardo J. Baltimore D, HIV-1 directly kils CD4 + T cells by fas-independent mechanism. J Exp Med 1998; 187: 1113 – 1122.en_US
dc.identifier.citedreferenceFinzi D, Siliciano R. Viral dynamics in HIV-1 infection. Cell 1998; 93: 665 – 671.en_US
dc.identifier.citedreferenceOgg G, et al. Quantitation of HIV-1 -specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 1998; 279: 2103 – 2106.en_US
dc.identifier.citedreferencePhilips R, et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 1991; 354: 453 – 459.en_US
dc.identifier.citedreferenceBorrow P et al. Antiviral pressure exerted by HiV-1 -specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med 1997; 3: 205 – 211.en_US
dc.identifier.citedreferenceGoulder P, et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med 1997; 3: 212 – 217.en_US
dc.identifier.citedreferenceMedzhitov R, Janeway C. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997; 91: 295 – 298.en_US
dc.identifier.citedreferenceAlbert M, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic ceils and induce class I–restricted CTLs. Nature 1998; 392: 86 – 89.en_US
dc.identifier.citedreferenceJondal M, Schirmbeck R, Reimann J. MHC class I-restricted CTL responses to exogenous antigens. Immunity 1996; 5: 295 – 302.en_US
dc.identifier.citedreferenceBerke G. The CTLs kiss of death. Cell 1995; 81: 9 – 12.en_US
dc.identifier.citedreferenceWalker C, Dewey J, Stites D, Levy J. CD8 + lymphocytes can control HIV infection in viiro by suppressing virus replication. Science 1986; 234: 1563 – 66.en_US
dc.identifier.citedreferenceYang O, et al. Efficient lysis of human immunodeficiency virus type 1 -infected cells by cytotoxic T lymphocytes. J Virol 1996; 70: 5799 – 5806.en_US
dc.identifier.citedreferenceWagner L, et al. Β-chemokines are released from HIV-1 -specific cytolytic T-cell granules complexed to proteoglycans. Nature 1998; 391: 908 – 911.en_US
dc.identifier.citedreferenceDeacon NJ, et al. Genomic structure of an attenuated quasi species of HIV-I from a blood transfusion donor and recipients. Science 1995; 270: 988 – 991.en_US
dc.identifier.citedreferenceKirchoff F, Greenough T, Brettler D, Sullivan J, Desrosiers R. Absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 1995; 332: 228 – 232.en_US
dc.identifier.citedreferenceKestler H, et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS Cell 1991; 65: 651 – 652.en_US
dc.identifier.citedreferenceSaksela K, Cheng G, Baltimore D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of src kinases and are required for the enhanced growth of Nef + viruses but not for dowiiregulation of CD4. EMBO J 1995; 14: 484 – 491.en_US
dc.identifier.citedreferenceSaksela K. HIV-1 Nef and host cell protein kinases. Front Biosci 1997; 2: 606 – 618.en_US
dc.identifier.citedreferenceChen B, Gandhi R, Baltimore D. CD4 down-modulation during infection of human T cells with human immunodeficiency virus type I involves indepenent activities of vpu, env, and nef. J Virol 1996; 70: 6044 – 6053.en_US
dc.identifier.citedreferenceCollins K, Chen B, Kalams S, Walker B, Baltimore D. HIV-1 Nef protein protects infected primary human cells from killing by cytotoxic T lymphocytes. Nature 1998; 391: 397 – 401.en_US
dc.identifier.citedreferenceKerkau T, Schmitt-Landgraf R, Schimpl A, Wecker E. Downregulation of HLA class I antigens in HIV-1 -infected cells. AIDS Res Hum Retroviruses 1989; 5: 613 – 620.en_US
dc.identifier.citedreferenceScheppler J, Nicholson J, Swan D, Ahmed-Ansari A, McDougal J. Down-modulation of MHC-I in a CD4 + T cell line, CEM-E5, after HIV-1 infection. J Immunol 1989; 143: 2558 – 2566.en_US
dc.identifier.citedreferenceHowcroft T, Strebel K, Martin M, Singer D. Repression of MHC class I gene promoter activity by two-exon Tat of HIV. Science 1993; 260: 1320 – 1322.en_US
dc.identifier.citedreferenceKerkau T, et al. The human immunodeficiency virus type 1 (HIV-1) Vpu protein interferes with an early step in the biosynthesis of major histocompatibility complex (MHC) class I molecules. J Exp Med 1997; 185: 1295 – 1305.en_US
dc.identifier.citedreferenceSchwartz O, Mareclial V, le Gall, S, Lemounier F, Heard J. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 1996; 2: 338 – 342.en_US
dc.identifier.citedreferenceTsomides T, Aldovini A, Johnson R, Walker B, Young R, Eisen H. Naturally processed viral peptides recognized by cytotoxic T lymphocytes on cells chronically infected by human immunodeficiency virus type 1. J Exp Med 1994; 180: 1283 – 93.en_US
dc.identifier.citedreferenceLe Gall, S, et al. Nef interacts with Μ subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 1998; 8: 483 – 495.en_US
dc.identifier.citedreferenceGreenberg M, Iafrate A, Skowronski J. The SH3 domain-binding surface and an acidic motif in HIV-1 Nef regulate trafficking of class I MHC complexes. EMBO J 1998; 17: 2777 – 2789.en_US
dc.identifier.citedreferenceMcCutcheon J, Gumperz J, Smith K, Lutz C, Parham P. Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA. J Exp Med 1995; 181: 2085 – 2095.en_US
dc.identifier.citedreferenceZemmour J. Inefficient assembly limits transport and cell surface expression of HLA-Cw4 molecules in CIR. Tissue Antigens 1996; 48: 651 – 661.en_US
dc.identifier.citedreferenceNeefjes J, Ploegh H. Allele and locus-specific differences in cell surface expression and the association of HLA class I heavy chain with Β2–microglobulin: differential effects of inhibition of glycosylation on class I subunit association. Eur J Immunol 1988; 18: 801 – 810.en_US
dc.identifier.citedreferenceNeisig A, Melief C, Neefjes J. Reduced cell surface expression of HLA-C molecules correlates with restricted peptide binding and stable TAP interaction. J Immunol 1998; 160: 171 – 179.en_US
dc.identifier.citedreferenceLanier L. Follow the leader: NK cell receptors for classical and nonclassical MHC class 1. Cell 1998; 92: 705 – 707.en_US
dc.identifier.citedreferenceWilson CC, et al. Overlapping epitopes in human immunodeficiency virus type I gp120 presented by HLA A, B, and C molecules: effects of viral variation on cytotoxic T-lymphocyte recognition. J Virol 1997; 71: 1256 – 1264.en_US
dc.identifier.citedreferenceJohnson RP, Trocha A, Buchanan TM, Walker BD. Recognition of a highly conserved region of human immunodeficiency virus type I gp120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone. J Virol 1993; 67: 438 – 45.en_US
dc.identifier.citedreferenceLittaua RA, et al. An HLA-C-restricted CD8 + cytotoxic T-lymphocyte clone recognizes a highly conserved epitope on human immunodeficiency virus type 1 gag. J Virol 1991; 65: 4051 – 4056.en_US
dc.identifier.citedreferenceHouchins JP, Lanier LL, Niemi EC, Phillips JH, Ryan JC. Natural killer cell cytolytic activity is inhibited by NKG2-A and activated by NKG2-C. J Immunol 1997; 158: 3603 – 3609.en_US
dc.identifier.citedreferenceOrenstein J, Fox C, Wahl S. Macrophages as a source of HIV during opportunistic infections. Science 1997; 276: 1857 – 1861.en_US
dc.identifier.citedreferenceGreenberg M, Bronson S, Lock M, Neumann M, Pavlakis G, Skowronski J. Co-localization of HIV-1 Nef with the AP-2 adaptor protein complex correlates with Nef-induced CD4 down-regulation. EMBO J 1997; 16: 6964 – 6976.en_US
dc.identifier.citedreferenceLiu L, et al. Binding of HIV-1 Nef to a novel thioesterase enzyme correlates with Nef-mediated CD4 down-regulation. J Biol Chem 1997; 272: 13779 – 13785.en_US
dc.identifier.citedreferencePiguet V, Chen Y, Mangasarian A, Foti M, Carpentier J, Trono D. Mechanism of Nef-induced CD4 endocytosis: Nef connects CD4 with the Μ chain of adaptor complexes. EMBO J 1998; 17: 2472 – 2481.en_US
dc.identifier.citedreferenceLu X, Yu H, Liu S, Brodsky F, Peterlin B. Interactions between HIV-1 Nef and vacuolar ATPase facilitate the internalization of CD4. Immunity 1998; 8: 647 – 656.en_US
dc.identifier.citedreferenceKlenerman P, Zinkernagel R. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 1998; 394: 482 – 485.en_US
dc.identifier.citedreferenceKlenerman P Meier U, Phillips R, McMichael A. The effects of natural altered peptide ligands on the whole blood cytotoxic T lymphocyte response to human immunodeficiency virus. Eur J Immunol 1995; 25: 1927 – 1931.en_US
dc.identifier.citedreferenceMcAdam S, et al. Immunogenic HIV variant peptides that bind to HLA-B8 can fail to stimulate cytotoxic T lymphocyte responses. J Immunol 1995; 155: 2729 – 2736.en_US
dc.identifier.citedreferenceMeier U, et al. Cytotoxic T lymphocyte lysis inhibited by viable HIV mutants. Science 1995; 270: 1360 – 1362.en_US
dc.identifier.citedreferenceKlenerman P, et al. Cytotoxic T-cell activity antagonized by naturally occurring HIV-1 Gag variants. Nature 1994; 369: 403 – 407.en_US
dc.identifier.citedreferenceXu X, et al. Evasion of CTL responses by Nef-dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virus-infected cells. J Exp Med 1997; 186: 1 – 10.en_US
dc.identifier.citedreferenceHerbein G, et al. Apoptosis of CD8 + T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4. Nature 1998; 395: 189 – 194.en_US
dc.identifier.citedreferenceRosenberg E, et al. Vigorous HIV-1 specific CD4 + T cell responses associated with control of viremia. Science 1997; 278: 1447 – 1450.en_US
dc.identifier.citedreferenceTrimble L, Lieberman J. Circulating CD8 T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3 zeta, the signaling chain of the T-cell receptor complex. Blood 1998; 91: 585 – 594.en_US
dc.identifier.citedreferenceHuang Y, Zhang L, Ho D. Characterization of nef sequences in long-term survivors of human immunodeficiency virus type I infection. J Virol 1995; 69: 93 – 100.en_US
dc.identifier.citedreferenceHuang Y, Zhang L, Ho D. Biological characterization of nef in long-term survivors of human immunodeficiency virus type 1 infection. J Virol 1995; 69: 8142 – 8146.en_US
dc.identifier.citedreferencePonten J, Macintyre E. Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 1968; 74: 465 – 486.en_US
dc.identifier.citedreferenceHopkins N. High titers of retrovirus (vesicular stomatitis virus) pseudotypes, at last. Proc Natl Acad Sci USA 1993; 90: 8759 – 8760.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.