Show simple item record

Flow cytometry for microbial sensing in environmental sustainability applications: current status and future prospects

dc.contributor.authorGruden, Cyndee L.en_US
dc.contributor.authorSkerlos, Steven J.en_US
dc.contributor.authorAdriaens, Peteren_US
dc.date.accessioned2010-06-01T22:38:06Z
dc.date.available2010-06-01T22:38:06Z
dc.date.issued2004-07en_US
dc.identifier.citationGruden, Cyndee; Skerlos, Steven; Adriaens, Peter (2004). "Flow cytometry for microbial sensing in environmental sustainability applications: current status and future prospects." FEMS Microbiology Ecology 49(1): 37-49. <http://hdl.handle.net/2027.42/75610>en_US
dc.identifier.issn0168-6496en_US
dc.identifier.issn1574-6941en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75610
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19712382&dopt=citationen_US
dc.description.abstractPractical and accurate microbial assessment of environmental systems is predicated on the detection and quantification of various microbial parameters in complex matrices. Traditional growth-based assays, considered to be both slow and biased, are increasingly being replaced by optical detection methods such as flow cytometry. Flow cytometry (FCM) offers high-speed multi-parametric data acquisition, compatibility with current molecular-based microbial detection technologies, and is a proven technology platform. The unique technical properties of flow cytometry have allowed the discrimination of bacteria based on nucleic acid staining, microbial identification based on genomic and immunologic characteristics, and determination of cell viability. For this technology to achieve the ultimate goal of monitoring the microbial ecology of distributed systems, it will be necessary to develop a fully functional, low cost, and networkable microsystem platform capable of rapid detection of multiple species of microorganisms simultaneously under realistic environmental conditions. One such microsystem, miniaturized and integrated in accordance with recent advances in micro-electro-mechanical systems technology, is named the Micro Integrated Flow Cytometer. This manuscript is a minireview of the current status and future prospects for environmental application of flow cytometry in general, and micro-flow cytometry in particular.en_US
dc.format.extent337720 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2004 Federation of European Microbiological Societiesen_US
dc.subject.otherFlow Cytometryen_US
dc.subject.otherMicrobial Sensingen_US
dc.subject.otherEnvironmental Applicationen_US
dc.subject.otherMonitoring Networken_US
dc.titleFlow cytometry for microbial sensing in environmental sustainability applications: current status and future prospectsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Civil Engineering, University of Toledo, Toledo, OH 43606, USAen_US
dc.identifier.pmid19712382en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75610/1/j.femsec.2004.01.014.pdf
dc.identifier.doi10.1016/j.femsec.2004.01.014en_US
dc.identifier.sourceFEMS Microbiology Ecologyen_US
dc.identifier.citedreferenceFerris, M.M., McCabe, M.O., Doan, L.G., Rowlen, K. ( 2002 ) Rapid enumeration of respiratory viruses. Anal. Chem. 74, 1849 – 1856.en_US
dc.identifier.citedreferenceSimpson, J.M., Domingo, J.W., Reasoner, D.J. ( 2002 ) Santo microbial source tracking: state of the science. Environ. Sci. Technol. 36 ( 24 ), 5279 – 5288.en_US
dc.identifier.citedreferenceBaeumner, A.J., Cohen, R.N., Miksik, V., Min, J. ( 2003 ) RNA biosensor for the rapid detection of viable Escherichia coli in Drinking Water. Biosens. Bioelectron 18, 405 – 413.en_US
dc.identifier.citedreferenceWang, D., Coscoy, L., Zylerberg, M., Avila, P.C., Boushey, H.A., Ganem, D., DeRisi, J.L. ( 2002 ) Microarray-based detection and genotyping of viral pathogens. Proc. Natl. Acad. Sci. USA 99, 15687 – 15692.en_US
dc.identifier.citedreferenceKong, R.Y.C., Lee, S.K.Y., Law, T.W.F., Law, S.H.W., Wu, R.S.S. ( 2002 ) Rapid detection of six types of bacterial pathogens in marine waters by multiplex PCR. Water Res. 36, 2802 – 2812.en_US
dc.identifier.citedreferenceLoge, F.J., Thompson, D.E., Call, D.R. ( 2002 ) PCR Detection of specific pathogens in water: a risk-based analysis. Environ. Sci. Technol. 36, 2754 – 2759.en_US
dc.identifier.citedreferenceAdriaens, P., Skerlos, S., Edwards, E.A., Goovaerts, P., Egli, T. ( 2003 ) Intelligent infrastructure for sustainable potable water supplies: a round table for emerging transnational research and technology development needs. Biotechnol. Adv. 22, 119 – 134.en_US
dc.identifier.citedreference[8] Weber, W.J.W. Jr. (2001) Distributed optimal technology networks: a concept and strategy for potable water sustainability. In: Proceedings of the Second International Water Congress, Berlin 2001, International Water Association, UK.en_US
dc.identifier.citedreferenceHowe, E., Harding, G. ( 2000 ) A comparison of protocols for the optimization of detection of bacteria using a surface acoustic wave (SAW) biosensor. Biosens. Bioelectron. 15, 641 – 649.en_US
dc.identifier.citedreferenceIvnitski, D., Abdel-Hamid, I., Atanasov, P., Wilkins, E. ( 1999 ) Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 14, 599 – 624.en_US
dc.identifier.citedreferencede Boer, E., Beumer, R.R. ( 1999 ) Methodology for detection and typing of foodborne microorganisms. Int. J. Food Microb. 50, 119 – 130.en_US
dc.identifier.citedreferenceWikstrom, P., Thornsten, J., Lundstedt, S., Hagglund, L., Forsman, M. ( 2001 ) Phenotypic biomonitoring using multivariate flow cytometric analysis of multi-stained microorganisms. FEMS Microbiol. Ecol. 34, 187 – 196.en_US
dc.identifier.citedreferenceNebe-von-Caron, G., Stephens, P.J., Hewitt, C.J., Powell, J.R., Badley, R.A. ( 2000 ) Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J. Microbiol. Methods 42, 97 – 114.en_US
dc.identifier.citedreferenceMcFeters, A.G., Yu, P.F., Pyle, H.B., Stewart, P.S. ( 1995 ) Physiological assessment of bacterial using fluorochromes. J. Microbiol. Methods 21, 1 – 13.en_US
dc.identifier.citedreferenceLebaron, P., Parthisuot, N., Catala, P. ( 1998 ) Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems. Appl. Environ. Microbiol. 64, 1725 – 1730.en_US
dc.identifier.citedreferenceGruden, C.L., Khijniak, A., Adriaens, P. ( 2003 ) Activity assessment of microorganisms eluted from sediments using CTC (5-cyano-2,3-ditolyl tetrazolium chloride): a quantitative comparison of flow cytometry to epifluorescent microscopy. J. Microbiol. Meth. 55, 865 – 874.en_US
dc.identifier.citedreferenceWeinbauer, M.G., Beckman, C., Hofle, M.G. ( 1998 ) Utility of green fluorescent nucleic acid dyes and aluminum oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria. Appl. Environ. Microbiol. 64, 5000 – 5003.en_US
dc.identifier.citedreferenceGriebler, C., Mindl, B., Slezak, D. ( 2001 ) Combining DAPI and SYBR green II for the enumeration of total bacterial numbers in aquatic sediments. Int. Rev. Hydrobiol. 86, 453 – 465.en_US
dc.identifier.citedreferenceVesey, G., Hutton, P., Champion, A., Ashbolt, N., Williams, K.L., Warton, A., Veal, D. ( 1994 ) Application of flow cytometric methods for the routine detection of Cryptosporidium and giardia in water. Cytometry 16, 1 – 6.en_US
dc.identifier.citedreferenceAbad, F.X., Pinto, R.M., Bosch, A. ( 1998 ) Flow cytometry detection of infectious rotaviruses in environmental and clinical samples. Appl. Environ. Microbiol. 64, 2392 – 2396.en_US
dc.identifier.citedreferencePorter, J., Deere, D., Hardman, M., Edwards, C., Pickup, R. ( 1997 ) Go with the flow-use of flow cytometry in environmental microbiology. FEMS Microbiol. Ecol. 24, 93 – 101.en_US
dc.identifier.citedreferencePorter, J., Deere, D., Pickup, R., Edwards, C. ( 1996 ) Fluorescent probes in flow cytometry: new insight into environmental bacteriology. Cytometry 23, 91 – 96.en_US
dc.identifier.citedreferencePorter, J., Pickup, R.W. ( 2000 ) Nucleic acid-based fluorescent probes in microbial ecology: application of flow cytometry. J. Microbiol. Methods 42, 75 – 79.en_US
dc.identifier.citedreference[24] Christensen, H., Poulsen, L.K. Detection of Pseudomonas in soil by rRNA targeted in situ hybridization. Soil Biol. Biochem. 26. (1994) 1093.en_US
dc.identifier.citedreference[25] Pace, N.R., Stahl, D.A., Lane, D.J., Olsen, G.J. (1986) The Analysis of Natural Microbial Populations by Ribosomal RNA Sequences. Plenum Press, New York..en_US
dc.identifier.citedreferenceAmann, R.I., Ludwig, W., Schleifer, K.-H. ( 1995 ) Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143 – 169.en_US
dc.identifier.citedreferenceVives-Rego, J., Lebaron, P., Caron, G. ( 2000 ) Nebe-von current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol. Rev. 24, 429 – 448.en_US
dc.identifier.citedreferenceGruntzig, V., Nold, S., Zhou, J., Tiedje, J.M. ( 2001 ) Pseudomonas stutzeri nitrite reductase gene abundance in environmental samples measured by real-time PCR. Appl. Environ. Microbiol. 67, 760 – 768.en_US
dc.identifier.citedreferenceSuziki, M.T., Taylor, L.T., Delong, E.F. ( 2000 ) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via nuclease assays. Appl. Environ. Microbiol. 66, 4605 – 4614.en_US
dc.identifier.citedreferenceReysenbach, A.-L., Giver, L.G., Wickham, G.S., Pace, N.R. ( 1992 ) Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58, 3417 – 3418.en_US
dc.identifier.citedreferenceWang, G.C.-Y., Wang, Y. ( 1997 ) Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes. Appl. Environ. Microbiol. 63, 4645 – 4650.en_US
dc.identifier.citedreferenceStrebel, A., Harr, T., Bachmann, F., WErnli, M., Erb, P. ( 2001 ) Green fluorescent protein as a novel tool to measure apoptosis and necrosis. Cytometry 43, 1133 – 1260.en_US
dc.identifier.citedreferenceChu, Y.-W., Wang, R., Schmid, I., Sakamoto, K.M. ( 1999 ) Analysis with flow cytometry of green fluorescent protein expression in leukemic cells. Cytometry 36, 333 – 339.en_US
dc.identifier.citedreferenceLybarger, L., Dempsey, D., Patterson, G.H., Piston, D.W., Kain, S.R., Chervenak, R. ( 1998 ) Dual-color flow cytometric detection of fluorescent proteins using single-laser (488 nm) excitation. Cytometry 31, 147 – 152.en_US
dc.identifier.citedreferenceLopez-Amoros, R., Castel, S., Comas-Riu, J., Vives-Rego, J. ( 1997 ) Assessment of E. coli and Salmonella viability and starvation by confocal laser microscopy and flow cytometry using rhodamine 123, DiBAC4(3), propidium iodide, CTC. Cytometry 29, 298 – 305.en_US
dc.identifier.citedreferenceDavey, H.M., Kell, D.B. ( 1996 ) Flow cytometry and cell sorting of heterogenous microbial populations: the importance of single cell analysis. Microbiol. Rev. 60, 641 – 696.en_US
dc.identifier.citedreferenceGruden, C.L., Fevig, S., Abu-Dalo, M., Hernandez, M. ( 2003 ) CTC (5-cyano-2,3-ditolyl tetrazolium chloride) reduction in a mesophilic anaerobic digester: measuring redox behavior, differentiating abiotic reduction, and comparing FISH response as an activity indicator. J. Microbiol. Methods 52, 59 – 68.en_US
dc.identifier.citedreference[38] Robinson, J.P. (1999) Current Protocols in Cytometry. Wiley, New York..en_US
dc.identifier.citedreferenceFuchs, B.M., Wallner, G., Beisker, W., Schwipple, I., Ludwig, W., Amann, R. ( 1998 ) Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently-labeled oligonucleotide probes. Appl. Environ. Microbiol. 64, 4973 – 4982.en_US
dc.identifier.citedreference[40] Yu, W., Dodds, W.K., Banks, M.K., Skalsky, J., Strauss, E.A. Optimal staining and sample storage time for direct microscopic enumeration of total and active bacteria in soil with two fluorescent dyes. Appl. Environ. Microbiol. 61. (1995) 3367.en_US
dc.identifier.citedreferenceProctor, L.M., Souza, A.C. ( 2001 ) Method for enumeration of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC)-active cells and cell-specific CTC activity of benthic bacteria in riverine estuarine and coastal sediments. J. Microbiol. Methods 43, 213 – 222.en_US
dc.identifier.citedreference[42] McKnight, D.M., Aiken, G.R. (1998) Sources and age of aquatic humus. In: Aquatic Humic Substances: Ecology and Biogeochemistry (Hessen, D.O., Tranvik, L.J., Eds.), pp.9–37 Springer-Verlag, Berlin, Heidelberg..en_US
dc.identifier.citedreferencePrescott, A.M., Fricker, C. ( 1999 ) Use of PNA oligonucleotides for the in situ detection of Escherichia coli in water. Molec. Cell. Probes 13, 261 – 268.en_US
dc.identifier.citedreferenceStender, H., Broomer, A., Oliveira, K. ( 2000 ) Rapid detection identification and enumeration of Pseudomonas aeruginosa in bottled water using peptide nucleic acid probes. J. Microbiol. Methods 42, 245 – 253.en_US
dc.identifier.citedreferencePerry-O'Keefe, H., Stender, H., Broomer, A., Olveira, K., Coull, J., Hyldig-Nielsen, J.J. ( 2001 ) Filter-based PNA in situ hybridization for rapid detection, identification and enumeration of specific microorganisms. J. Appl. Microbiol. 90, 180 – 189.en_US
dc.identifier.citedreference[46] Skerlos, S.J., Skerlos, L.A., Aguilar, C.A. and Zhao, F. (2003) Expeditious identification and quanitifcation of mycobacteria species using peptide nucleic acids. In: Transactions of NAMRI/SME, Vol. XXXI, Hamilton, Canada, May 20–23, 2003.en_US
dc.identifier.citedreferenceStender, H., Fiandaca, M., Hyldig-Nielsen, J.J., Coull, J. ( 2002 ) PNA for rapid microbiology. J. Microbiol. Methods 48, 1 – 17.en_US
dc.identifier.citedreferenceTyagi, S., Kramer, T.F. ( 1996 ) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotech. 14, 303 – 308.en_US
dc.identifier.citedreferenceKaprelyants, A.S., Kell, D.B. ( 1993 ) The use of 5-cyano-2,3-ditolyl tetrazolium chloride and flow cytometry for visualization of respiratory activity in individual cells of Micrococcus luteus. J. Microbiol. Methods 17, 115 – 122.en_US
dc.identifier.citedreferenceSieracki, M.E., Cucci, T.L., Nicinski, J. ( 1999 ) Flow cytometric analysis of 5-cyano-2,3-ditolyl tetrazolium chloride activity of marine bacterioplankton in dilution cultures. Appl. Environ. Microbiol. 65, 2409 – 2417.en_US
dc.identifier.citedreferenceDel Giorgio, P.A., Prairie, Y.T., Bird, D.B. ( 1997 ) Coupling between rates of bacterial production and the abundance of metabolically active bacteria in lakes, enumerated using CTC reduction and flow cytometry. Microbial Ecol. 34, 144 – 154.en_US
dc.identifier.citedreference[52] Gruden, C.L., Chang, S.-C., Rihana-Abdallah, A., Khijniak, A., Skerlos, S. and Adriaens, P. (2002) Rapid microbial sensing for environmental health applications using flow cytometry. In: NIH: BECON 2002 Symposium, Sensors for Biological Research and Medicine, Bethesda, MD, June 24–25, 2002.en_US
dc.identifier.citedreference[53] National Research Council (1998) Issues in Potable Reuse. The Viability of Augmenting Drinking Water Supplies with Reclaimed Water. NRC Press, Washington, DC.en_US
dc.identifier.citedreferenceRice, J., Sleigh, M.A., Burkill, P.H., Tarran, G.A., O'Connor, D., Zubkov, M.V. ( 1997 ) Flow cytometric analysis of characteristics of hybridization of species-specific fluorescent oligonucleotide probes to rRNA of marine nanoflagellates. Appl. Environ. Microbiol. 63, 938 – 944.en_US
dc.identifier.citedreferenceMarie, D., Brussard, C.P.D., Thyrhaug, R., Bratbak, G., Vaulot, D. ( 1999 ) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl. Environ. Microbiol. 65, 45 – 52.en_US
dc.identifier.citedreferencePorter, J., Edwards, C., Morgan, J.A.W., Pickup, R.W. ( 1993 ) Rapid, automated separation of specifi bacteria from lakewater and sewage by flow cytometry and cell sorting. Appl. Environ. Microbiol. 59, 3327 – 3333.en_US
dc.identifier.citedreferencePorter, J., Robinson, J., Pickup, R., Edwards, C. ( 1995 ) Recovery of a bacterial sub-population from sewage using immunofluorescent flow cytometry and cell sorting. FEMS Microbiol. Lett. 133, 195 – 199.en_US
dc.identifier.citedreferenceWalner, G., Erhart, R., Amann, R. ( 1995 ) Flow cytometric analysis of of activated sludge with rRNA-targeted probes. Appl. Environ. Microbiol. 61, 1859 – 1866.en_US
dc.identifier.citedreferenceZiglio, G., Andreottola, G., Barbesti, S., Boschetti, G., Bruni, L., Foladori, P., Villa, R. ( 2002 ) Assessment of activated sludge viability with flow cytometry. Water Res. 36, 460 – 468.en_US
dc.identifier.citedreferenceLopez-Amoros, R., Mason, D.J., Lloyd, D. ( 1999 ) Use of two oxonols and a fluorescent tetrazolium dye to monitor starvation of Escherichia coli in seawater by flow cytometry. J. Microbiol. Methods 22, 165 – 176.en_US
dc.identifier.citedreference[61] del Giorgio, Prairie, Y.T., Bird, D.B. ( 1997 ) Coupling between rates of bacterial production and the abundance of metabolically active bacteria in lakes, enumerated using CTC reduction and flow cytometry. Microbial Ecol. 34, 144 – 154.en_US
dc.identifier.citedreferenceRiffard, S., Douglass, S., Brooks, T., Springthorpe, S., Filion, L.G., Sattar, S.A. ( 2001 ) Occurrence of Legionella in groundwater: an ecological study. Water Sci. Technol. 43, 99 – 102.en_US
dc.identifier.citedreferenceDeFlaun, M.F., Fuller, M.E., Zhang, P.F., Johnson, W.P., Mailloux, B.J., Holben, W.E., Kovacik, W.P., Balkwill, D.L., Onstott, T.C. ( 2001 ) Comparison of methods for monitoring bacterial transport in the subsurface. J. Microbiol. Meth. 47, 219 – 231.en_US
dc.identifier.citedreferenceRose, J.B. ( 1997 ) Environmental ecology of Cryptosporidium and public health implications. Annu Rev. Publ. Health 18, 135 – 161.en_US
dc.identifier.citedreferencePage, S., Burns, R.G. ( 1991 ) Flow cytometry as a means of enumerating bacteria introduced into soil. Siol. Biol. Biochem. 23, 1025 – 1028.en_US
dc.identifier.citedreferencePorter, J., Pickup, R.W., Edwards, C. ( 1997 ) Evaluation of flow cytometric methods for the detection and viability assessment of bacteria in soil. Soil. Biol. Biochem. 29, 91 – 100.en_US
dc.identifier.citedreferenceStauber, J.L., Franklin, N.M., Adams, M.S. ( 2002 ) Applications of flow cytometry to ecotoxicity testing using microalgae. Trends Biotechnol. 20, 141 – 143.en_US
dc.identifier.citedreference[68] Chang, S.-C.i, Rihana, A., Bahrman1, S., Gruden, C.L., Khijniak, A.I., Skerlos, S.J. and Adriaens, P. (2004) Flow cytometric detection and quantification of mycobacteria in metalworking fluids. Int. Biodeteriorat. Biodegrad. In press.en_US
dc.identifier.citedreferenceHuh, D., Tung, Y-C., Wei, H.-H., Grotberg, J.B., Skerlos, S.J., Kurbayashi, K., Takayama, S. ( 2002 ) Use of air-liquid two-phase flow in hydrophobic microfluidic channels for disposable flow cytometers. Biomed. Microdevices. 4, 141 – 149.en_US
dc.identifier.citedreference[70] Tung, Y-C., Lin, C.-T., Kurabayashi, K. and Skerlos, S.J. (2002) High fidelity detection of multi color fluorescence signals from biological cells using silicon-based photodetectors in a disposable flow cytometer channel. In: Sixth International Symposium on MicroTotal Analysis Systems (ΜTAS), Nara, Japan, November 3–7, 2002.en_US
dc.identifier.citedreference[71] Altendorf, E., Zebert, D., Holl, M. and Yager, P. (1997) Differential blood cell counts obtained using a microchannel flow cytometer. In: Proceedings of the 1997 International Conference on Solid-State Sensors and Actuators, Chicago, IL, USA, June 16–19, 1997.en_US
dc.identifier.citedreference[72] Sobek, D., Young, A.M., Gray, M.L. and Senturia, S.D. (1993) A microfabricated flow chamber for optical measurements in fluids. In: Proceedings of the 1993 IEEE MEMS, Fort Lauderdale, FL, USA, February 1993, p. 219–224.en_US
dc.identifier.citedreferenceMiyake, R., Ohki, H., Yamazaki, I., Takagi, T. ( 1997 ) Investigation of sheath flow chambers for flow cytometers. JSME Int. J. Series B 40 ( 1 ), 106 – 113.en_US
dc.identifier.citedreferenceMiyake, R., Ohki, H., Yamazaki, I., Takagi, T. ( 2000 ) Flow cytometric analysis by using micro-machined flow chamber. JSME Int. J. Series B 43 ( 2 ), 219 – 224.en_US
dc.identifier.citedreference[75] Ro, K.W., Shim, B.C., Lim, K. and Hahn, J.H. (2001) Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis. In: Proceedings of the 5th International Symposium on Micro Total Analysis Systems (ΜTAS), Monterey, CA, USA, October 2001.en_US
dc.identifier.citedreferenceBurns, M.A., Johnson, B.N., Brahmasandra, S.N., Handique, K., Webster, J.R., Krishnan, M., Sammarco, T.S., Man, P.M., Jones, D., Heldsinger, D., Mastrangelo, C.H., Burke, T. ( 1998 ) An integrated nanoliter DNA analysis device. Science 282, 484 – 487.en_US
dc.identifier.citedreferenceDuffy, D.C., McDonald, J.C., Schueller, O.J.A., Whitesides, G.M. ( 1998 ) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974 – 4984.en_US
dc.identifier.citedreferenceDuffy, D.C., Schueller, O.J.A., Brttain, S.T., Whitesides, G.M. ( 1999 ) Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow. J. Micromech. Microeng. 9, 211 – 217.en_US
dc.identifier.citedreferenceJo, B.-H., Lerberghe, L.M.v., Motsegood, K.M., Beebe, D.J. ( 2000 ) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Microelectromech. Syst. 9, 76 – 81.en_US
dc.identifier.citedreferenceEffenhauser, C.S., Bruin, G.J.M., Paulus, A., Ehrat, M. ( 1997 ) Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA Restriction fragments and detection of single DNA fragments and detection of single DNA molecules on microchips. Anal. Chem. 69, 3451 – 3457.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.