Show simple item record

Variation and evolution of toxin gene expression patterns of six closely related venomous marine snails

dc.contributor.authorDuda, T. F. Jr.en_US
dc.contributor.authorRemigio, E. A.en_US
dc.date.accessioned2010-06-01T22:41:23Z
dc.date.available2010-06-01T22:41:23Z
dc.date.issued2008-06en_US
dc.identifier.citationDUDA JR, T. F.; REMIGIO, E. A. (2008). "Variation and evolution of toxin gene expression patterns of six closely related venomous marine snails." Molecular Ecology 17(12): 3018-3032. <http://hdl.handle.net/2027.42/75661>en_US
dc.identifier.issn0962-1083en_US
dc.identifier.issn1365-294Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75661
dc.format.extent386589 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 Blackwell Publishing Ltden_US
dc.subject.otherConusen_US
dc.subject.otherCoordinated Expressionen_US
dc.subject.otherFour-loop Conotoxinsen_US
dc.subject.otherGene Family Evolutionen_US
dc.subject.otherO-superfamilyen_US
dc.subject.otherResurrected Locien_US
dc.titleVariation and evolution of toxin gene expression patterns of six closely related venomous marine snailsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Department of Ecology and Evolutionary Biology & Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor MI 48109, USA,en_US
dc.contributor.affiliationother† Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, AncÓn, Republic of Panamaen_US
dc.identifier.pmid18489546en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75661/1/j.1365-294X.2008.03804.x.pdf
dc.identifier.doi10.1111/j.1365-294X.2008.03804.xen_US
dc.identifier.sourceMolecular Ecologyen_US
dc.identifier.citedreferenceBougis PE, Marchot P, Rochat H ( 1987 ) In vivo synergy of cardiotoxin and phospholipase A2 from the elapid snake Naja mossambica mossambica. Toxicon, 25, 427 – 431.en_US
dc.identifier.citedreferenceChaim-Matyas A, Borkow G, Ovadia M ( 1995 ) Synergism between cytotoxin P4 from the snake venom of Naja nigricollis nigricollis and various phospholipases. Comparative Biochemistry and Physiology — Part B: Biochemistry and Molecular Biology, 110, 83 – 89.en_US
dc.identifier.citedreferenceChain FJJ, Evans BJ ( 2006 ) Multiple mechanisms promote the retained expression of gene duplicates in the tetraploid frog Xenopus laevis. PLoS Genetics, 2 ( 6 ), 478 – 490.en_US
dc.identifier.citedreferenceCondrea E, De Vries A, Mager J ( 1964 ) Hemolysis and splitting of human erythrocyte phospholipids by snake venom. Biochimica et Biophysica Acta, 84, 60 – 73.en_US
dc.identifier.citedreferenceConticello SG, Gilad Y, Avidan N, Ben-Asher E, Levy Z, Fainzilber M ( 2001 ) Mechanisms for evolving hypervariability: the case of conopeptides. Molecular Biology and Evolution, 18, 120 – 131.en_US
dc.identifier.citedreferenceDerome N, Bernatchez L ( 2006 ) The transcriptomics of ecological convergence between 2 limnetic coregonine fishes (Salmonidae). Molecular Biology and Evolution, 23, 2370 – 2378.en_US
dc.identifier.citedreferenceDuda TF Jr, Kohn AJ ( 2005 ) Species-level phylogeography and evolutionary history of the hyperdiverse marine gastropod genus Conus. Molecular Phylogenetics and Evolution, 34, 257 – 272.en_US
dc.identifier.citedreferenceDuda TF Jr, Kohn AJ, Palumbi SR ( 2001 ) Origins of diverse feeding ecologies within Conus, a genus of venomous marine gastropods. Biological Journal of the Linnean Society, 73, 391 – 409.en_US
dc.identifier.citedreferenceDuda TF Jr, Palumbi SR ( 1999a ) Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proceedings of the National Academy of Sciences, USA, 96, 6820 – 6823.en_US
dc.identifier.citedreferenceDuda TF Jr, Palumbi SR ( 1999b ) Developmental shifts and species selection in gastropods. Proceedings of the National Academy of Sciences, USA, 96, 10272 – 10277.en_US
dc.identifier.citedreferenceDuda TF Jr, Palumbi SR ( 2000 ) Evolutionary diversification of multigene families: allelic selection of toxins in predatory cone snails. Molecular Biology and Evolution, 17, 1286 – 1293.en_US
dc.identifier.citedreferenceDuda TF Jr, Palumbi SR ( 2004 ) Gene expression and feeding ecology: evolution of piscivory in the venomous gastropod genus Conus. Proceedings of the Royal Society B: Biological Sciences, 271, 1165 – 1174.en_US
dc.identifier.citedreferenceDuda TF Jr, RolÁn E ( 2005 ) Explosive radiation of Cape Verde Conus, a marine species flock. Molecular Ecology, 14, 267 – 272.en_US
dc.identifier.citedreferenceFlessa KW, Jablonski D ( 1983 ) Extinction is here to stay. Paleobiology, 9 ( 4 ), 315 – 321.en_US
dc.identifier.citedreferenceGiger T, Excoffier L, Day PJR et al. ( 2006 ) Life history shapes gene expression in salmonids. Current Biology, 16 ( 8 ), R281 – R282.en_US
dc.identifier.citedreferenceGilad Y, Oshlack A, Smyth GK, Speed TP, White KP ( 2006 ) Expression profiling in primates reveals a rapid evolution of human transcription factors. Nature, 440, 242 – 245.en_US
dc.identifier.citedreferenceHarvey AL, Hider RC, Khader F ( 1983 ) Effect of phospholipase A on actions of cobra venom cardiotoxins on erythrocytes and skeletal muscle. Biochimica et Biophysica Acta, 728, 215 – 221.en_US
dc.identifier.citedreferenceJones A, Bingham JP, Gehrmann J et al. ( 1995 ) Isolation and characterization of conopeptides by high-performance liquid chromatography combined with mass spectrometry and tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 10, 138 – 143.en_US
dc.identifier.citedreferenceKimura M ( 1980 ) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111 – 120.en_US
dc.identifier.citedreferenceKohn AJ ( 1959 ) The ecology of Conus in Hawaii. Ecological Monographs, 29 ( 1 ), 47 – 90.en_US
dc.identifier.citedreferenceKohn AJ ( 1966 ) Food specialization in Conus in Hawaii and California. Ecology, 47, 1041 – 1043.en_US
dc.identifier.citedreferenceKohn AJ ( 1980 ) Abundance, diversity, and resource use in an assemblage of Conus species in Enewetak Lagoon. Pacific Science, 34 ( 4 ), 359 – 369.en_US
dc.identifier.citedreferenceKohn AJ ( 2001 ) Maximal species richness in Conus: diversity, diet and habitat on reefs of northeast Papua New Guinea. Coral Reefs, 20, 25 – 38.en_US
dc.identifier.citedreferenceKohn AJ, Almasi KN ( 1993 ) Comparative ecology of a biogeographically heterogeneous Conus assemblage. In: Proceedings of the Fifth International Marine Biological Workshop: the Marine Flora and Fauna of Rottnest Island, Western Australia (eds Wells FE, Walker DI, Kirkman H, Lethbridge R ), pp. 509 – 521. Western Australia Museum, Perth, Western Australia.en_US
dc.identifier.citedreferenceKohn AJ, Nybakken JW ( 1975 ) Ecology of Conus on eastern Indian Ocean fringing reefs: diversity of species and resource utilization. Marine Biology, 29, 211 – 234.en_US
dc.identifier.citedreferenceKohn AJ, Orians GH ( 1962 ) Ecological data and the classification of closely related species. Systematic Zoology, 11, 119 – 127.en_US
dc.identifier.citedreferenceKoonin EV ( 2005 ) Orthologs, paralogs, and evolutionary genomics. Annual Review in Genetics, 39, 309 – 338.en_US
dc.identifier.citedreferenceLeviten PJ ( 1980 ) The foraging strategy of vermivorous conid gastropods. Ecological Monographs, 46, 157 – 178.en_US
dc.identifier.citedreferenceLocascio A, Manzanares M, Blanco MJ, Nieto MA ( 2002 ) Modularity and reshuffling of Snail and Slug expression during vertebrate evolution. Proceedings of the National Academy of Sciences, USA, 99 ( 26 ), 16841 – 16846.en_US
dc.identifier.citedreferenceLouw AI, Visser RC ( 1978 ) The synergism of cardiotoxins and phospholipase A2. Biochimica et Biophysica Acta, 512, 163 – 171.en_US
dc.identifier.citedreferenceMaddison WP, Maddison DR ( 1992 ) macclade version 3: Analysis of Phylogeny and Character Evolution. 398 pp (book) + 900K (Computer Program). Sinauer & Associates, Sunderland, Massachusetts.en_US
dc.identifier.citedreferenceMarsh H ( 1971 ) Observations on the food and feeding of some vermivorous Conus on the Great Barrier Reef. Veliger, 14 ( 1 ), 45 – 53.en_US
dc.identifier.citedreferenceMarshall CR, Raff EC, Raff RA ( 1994 ) Dollo's law and the death and resurrection of genes. Proceedings of the National Academy of Sciences, USA, 91, 12283 – 12287.en_US
dc.identifier.citedreferenceNei M, Gu X, Sitnikova T ( 1997 ) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proceedings of the National Academy of Sciences, USA, 94, 7799 – 7806.en_US
dc.identifier.citedreferenceNybakken J, Perron F ( 1988 ) Ontogenetic change in the radula of Conus magus (Gastropoda). Marine Biology, 98, 239 – 242.en_US
dc.identifier.citedreferenceOlivera BM, Rivier J, Scott JK, Hillyard DR, Cruz LJ ( 1991 ) Minireview: conotoxins. Journal of Biological Chemistry, 266 ( 33 ), 22067 – 22070.en_US
dc.identifier.citedreferenceOlivera BM, Walker C, Cartier GE et al. ( 1999 ) Speciation of cones snails and interspecific hyperdivergence of their venom peptides. Annals of the New York Academy of Sciences, 870, 223 – 237.en_US
dc.identifier.citedreferencePosada D, Crandall KA ( 1998 ) modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817 – 818.en_US
dc.identifier.citedreferenceReichelt RE, Kohn AJ ( 1985 ) Feeding and distribution of predatory gastropods on some Great Barrier Reef platforms. Proceedings of the Fifth International Coral Reef Congress, 5, 191 – 196.en_US
dc.identifier.citedreferenceShiu SH, Byrnes JK, Pan R, Zhang P, Li WH ( 2006 ) Role of positive selection in the retention of duplicate genes in mammalian genomes. Proceedings of the National Academy of Sciences, USA, 103, 2232 – 2236.en_US
dc.identifier.citedreferenceStarbÄck P, Wraith A, Eriksson H, Larhammar D ( 2000 ) Neuropeptide Y receptor gene y6: multiple deaths or resurrections? Biochemical and Biophysical Research Communications, 277, 264 – 269.en_US
dc.identifier.citedreferenceSwofford DL ( 2002 ) paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer & Associates, Sunderland, Massachusetts.en_US
dc.identifier.citedreferenceTerlau H, Shon K-J, Grilley M, Stocker M, StÜhmer W, Olivera BM ( 1996 ) Strategy for rapid immobilization of prey by a fish-hunting marine snail. Nature, 381, 148 – 151.en_US
dc.identifier.citedreferenceWhitehead A, Crawford DL ( 2006a ) Variation within and among species in gene expression: raw material for evolution. Molecular Ecology, 15, 1197 – 1211.en_US
dc.identifier.citedreferenceWhitehead A, Crawford DL ( 2006b ) Neutral and adaptive variation in gene expression. Proceedings of the National Academy of Sciences, USA, 103 ( 14 ), 5425 – 5430.en_US
dc.identifier.citedreferenceYang Z ( 1997 ) paml: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences, 13, 555 – 556.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.