Show simple item record

ATP-dependent ligases in trypanothione biosynthesis – kinetics of catalysis and inhibition by phosphinic acid pseudopeptides

dc.contributor.authorOza, Sandra L.en_US
dc.contributor.authorChen, Shoujunen_US
dc.contributor.authorWyllie, Susanen_US
dc.contributor.authorCoward, James K.en_US
dc.contributor.authorFairlamb, Alan H.en_US
dc.date.accessioned2010-06-01T22:42:48Z
dc.date.available2010-06-01T22:42:48Z
dc.date.issued2008-11en_US
dc.identifier.citationOza, Sandra L.; Chen, Shoujun; Wyllie, Susan; Coward, James K.; Fairlamb, Alan H. (2008). "ATP-dependent ligases in trypanothione biosynthesis – kinetics of catalysis and inhibition by phosphinic acid pseudopeptides." FEBS Journal 275(21): 5408-5421. <http://hdl.handle.net/2027.42/75683>en_US
dc.identifier.issn1742-464Xen_US
dc.identifier.issn1742-4658en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75683
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18959765&dopt=citationen_US
dc.format.extent757189 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 Federation of European Biochemical Societiesen_US
dc.subject.otherDrug Discoveryen_US
dc.subject.otherEnzyme Mechanismen_US
dc.subject.otherGlutathionylspermidine Synthetaseen_US
dc.subject.otherSlow-binding Inhibitionen_US
dc.subject.otherTrypanothione Synthetaseen_US
dc.titleATP-dependent ligases in trypanothione biosynthesis – kinetics of catalysis and inhibition by phosphinic acid pseudopeptidesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum2  Departments of Medicinal Chemistry and Chemistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationother1  Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, UKen_US
dc.identifier.pmid18959765en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75683/1/j.1742-4658.2008.06670.x.pdf
dc.identifier.doi10.1111/j.1742-4658.2008.06670.xen_US
dc.identifier.sourceFEBS Journalen_US
dc.identifier.citedreferenceNwaka S & Hudson A ( 2006 ) Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 5, 941 – 955.en_US
dc.identifier.citedreferenceBerriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B et al. ( 2005 ) The genome of the African trypanosome Trypanosoma brucei. Science 309, 416 – 422.en_US
dc.identifier.citedreferenceKrauth-Siegel RL & Comini MA ( 2008 ) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta 1780, 1236 – 1248.en_US
dc.identifier.citedreferenceFlohÉ L, Steinert P, Hecht HJ & Hofmann B ( 2002 ) Tryparedoxin and tryparedoxin peroxidase. Methods Enzymol 347, 244 – 258.en_US
dc.identifier.citedreferenceKÖnig J & Fairlamb AH ( 2007 ) A comparative study of type I and type II tryparedoxin peroxidases in Leishmania major. FEBS J 274, 5643 – 5658.en_US
dc.identifier.citedreferenceSchlecker T, Comini MA, Melchers J, Ruppert T & Krauth-Siegel RL ( 2007 ) Catalytic mechanism of the glutathione peroxidase-type tryparedoxin peroxidase of Trypanosoma brucei. Biochem J 405, 445 – 454.en_US
dc.identifier.citedreferenceFairlamb AH & Henderson GB ( 1987 ) Metabolism of trypanothione and glutathionylspermidine in trypanosomatids. In Host–Parasite Cellular and Molecular Interactions in Protozoal Infections ( Chang K-P & Snary D, eds ), pp. 29 – 40. Springer-Verlag/NATO ASI Series, Vol. H11, Berlin.en_US
dc.identifier.citedreferenceFairlamb AH & Cerami A ( 1992 ) Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 46, 695 – 729.en_US
dc.identifier.citedreferenceKrauth-Siegel RL & SchÖneck R ( 1995 ) Trypanothione reductase and lipoamide dehydrogenase as targets for a structure-based drug design. FASEB J 9, 1138 – 1146.en_US
dc.identifier.citedreferenceHenderson GB, Ulrich P, Fairlamb AH, Rosenberg I, Pereira M, Sela M & Cerami A ( 1988 ) ‘Subversive’ substrates for the enzyme trypanothione disulfide reductase: alternative approach to chemotherapy of Chagas’ disease. Proc Natl Acad Sci USA 85, 5374 – 5378.en_US
dc.identifier.citedreferenceJockers-Scherubl MC, Schirmer RH & Krauth-Siegel RL ( 1989 ) Trypanothione reductase from Trypanosoma cruzi: catalytic properties of the enzyme and inhibition studies with trypanocidal compounds. Eur J Biochem 180, 267 – 272.en_US
dc.identifier.citedreferenceVickers TJ & Fairlamb AH ( 2004 ) Trypanothione S -transferase activity in a trypanosomatid ribosomal elongation factor 1B. J Biol Chem 279, 27246 – 27256.en_US
dc.identifier.citedreferenceIrsch T & Krauth-Siegel RL ( 2004 ) Glyoxalase II of African trypanosomes is trypanothione-dependent. J Biol Chem 279, 22209 – 22217.en_US
dc.identifier.citedreferenceAriza A, Vickers TJ, Greig N, Armour KA, Dixon MJ, Eggleston IM, Fairlamb AH & Bond CS ( 2006 ) Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme. Mol Microbiol 59, 1239 – 1248.en_US
dc.identifier.citedreferenceGreig N, Wyllie S, Vickers TJ & Fairlamb AH ( 2006 ) Trypanothione-dependent glyoxalase I in Trypanosoma cruzi. Biochem J 400, 217 – 223.en_US
dc.identifier.citedreferenceSousa SM, Ferreira AE, Tomas AM, Cordeiro C & Ponces FA ( 2005 ) Quantitative assessment of the glyoxalase pathway in Leishmania infantum as a therapeutic target by modelling and computer simulation. FEBS J 272, 2388 – 2398.en_US
dc.identifier.citedreferenceOza SL, Tetaud E, Ariyanayagam MR, Warnon SS & Fairlamb AH ( 2002 ) A single enzyme catalyses formation of trypanothione from glutathione and spermidine in Trypanosoma cruzi. J Biol Chem 277, 35853 – 35861.en_US
dc.identifier.citedreferenceOza SL, Ariyanayagam MR, Aitcheson N & Fairlamb AH ( 2003 ) Properties of trypanothione synthetase from Trypanosoma brucei. Mol Biochem Parasitol 131, 25 – 33.en_US
dc.identifier.citedreferenceOza SL, Shaw MP, Wyllie S & Fairlamb AH ( 2005 ) Trypanothione biosynthesis in Leishmania major. Mol Biochem Parasitol 139, 107 – 116.en_US
dc.identifier.citedreferenceComini M, Menge U & FlohÉ L ( 2003 ) Biosynthesis of trypanothione in Trypanosoma brucei brucei. Biol Chem 384, 653 – 656.en_US
dc.identifier.citedreferenceDumas C, Ouellette M, Tovar J, Cunningham ML, Fairlamb AH, Tamar S, Olivier M & Papadopoulou B ( 1997 ) Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO J 16, 2590 – 2598.en_US
dc.identifier.citedreferenceTovar J, Cunningham ML, Smith AC, Croft SL & Fairlamb AH ( 1998 ) Down-regulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans -dominant mutant homologue: effect on parasite intracellular survival. Proc Natl Acad Sci USA 95, 5311 – 5316.en_US
dc.identifier.citedreferenceKrieger S, Schwarz W, Ariyanayagam MR, Fairlamb AH, Krauth-Siegel RL & Clayton C ( 2000 ) Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol Microbiol 35, 542 – 552.en_US
dc.identifier.citedreferenceComini MA, Guerrero SA, Haile S, Menge U, Lunsdorf H & FlohÉ L ( 2004 ) Validation of Trypanosoma brucei trypanothione synthetase as drug target. Free Radic Biol Med 36, 1289 – 1302.en_US
dc.identifier.citedreferenceAriyanayagam MR, Oza SL, Guther ML & Fairlamb AH ( 2005 ) Phenotypic analysis of trypanothione synthetase knockdown in the African trypanosome. Biochem J 391, 425 – 432.en_US
dc.identifier.citedreferenceSmith K, Nadeau K, Walsh C & Fairlamb AH ( 1992 ) Purification of glutathionylspermidine and trypanothione synthetases from Crithidia fasciculata. Protein Sci 1, 874 – 883.en_US
dc.identifier.citedreferenceTetaud E, Manai F, Barrett MP, Nadeau K, Walsh CT & Fairlamb AH ( 1998 ) Cloning and characterization of the two enzymes responsible for trypanothione biosynthesis in Crithidia fasciculata. J Biol Chem 273, 19383 – 19390.en_US
dc.identifier.citedreferenceComini M, Menge U, Wissing J & FlohÉ L ( 2005 ) Trypanothione synthesis in Crithidia revisited. J Biol Chem 280, 6850 – 6860.en_US
dc.identifier.citedreferenceMcClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du FY et al. ( 2001 ) Complete genome sequence of Salmonella enterica serovar typhimurium LT2. Nature 413, 852 – 856.en_US
dc.identifier.citedreferenceJin Q, Yuan ZH, Xu JG, Wang Y, Shen Y, Lu WC, Wang JH, Liu H, Yang J, Yang F et al. ( 2002 ) Genome sequence of Shigella flexneri  2a: insights into pathogenicity through comparison with genomes of Escherichia coli  K12 and O157. Nucleic Acids Res 30, 4432 – 4441.en_US
dc.identifier.citedreferenceTabor H & Tabor CW ( 1975 ) Isolation, characterization and turnover of glutathionylspermidine from Escherichia coli. J Biol Chem 250, 2648 – 2654.en_US
dc.identifier.citedreferenceShim H & Fairlamb AH ( 1988 ) Levels of polyamines, glutathione and glutathione–spermidine conjugates during growth of the insect trypanosomatid Crithidia fasciculata. J Gen Microbiol 134, 807 – 817.en_US
dc.identifier.citedreferenceSmith K, Borges A, Ariyanayagam MR & Fairlamb AH ( 1995 ) Glutathionylspermidine metabolism in Escherichia coli. Biochem J 312, 465 – 469.en_US
dc.identifier.citedreferencePai CH, Chiang BY, Ko TP, Chou CC, Chong CM, Yen FJ, Chen SJ, Coward JK, Wang AHJ & Lin CH ( 2006 ) Dual binding sites for translocation catalysis by Escherichia coli glutathionylspermidine synthetase. EMBO J 25, 5970 – 5982.en_US
dc.identifier.citedreferenceOza SL, Ariyanayagam MR & Fairlamb AH ( 2002 ) Characterization of recombinant glutathionylspermidine synthetase/amidase from Crithidia fasciculata. Biochem J 364, 679 – 686.en_US
dc.identifier.citedreferenceKoenig K, Menge U, Kiess M, Wray V & FlohÉ L ( 2005 ) Convenient isolation and kinetic mechanism of glutathionylspermidine synthetase from Crithidia fasciculata. Vol. 272 (1997) 11908–11915. J Biol Chem 280, 7407.en_US
dc.identifier.citedreferenceKoenig K, Menge U, Kiess M, Wray V & FlohÉ L ( 1997 ) Convenient isolation and kinetic mechanism of glutathionylspermidine synthetase from Crithidia fasciculata. J Biol Chem 272, 11908 – 11915.en_US
dc.identifier.citedreferenceVerbruggen C, De Craecker S, Rajan P, Jiao XY, Borloo M, Smith K, Fairlamb AH & Haemers A ( 1996 ) Phosphonic acid and phosphinic acid tripeptides as inhibitors of glutathionylspermidine synthetase. Bioorg Med Chem Lett 6, 253 – 258.en_US
dc.identifier.citedreferenceAmssoms K, Oza SL, Augustyns K, Yamani A, Lambeir A, Bal G, Van der Veken P, Fairlamb AH & Haemers A ( 2002 ) Glutathione-like tripeptides as inhibitors of glutathionylspermidine synthetase. Part 2: Substitution of the glycine part. Bioorg Med Chem Lett 12, 2703 – 2705.en_US
dc.identifier.citedreferenceRadzicka A & Wolfenden R ( 1995 ) Transition-state and multisubstrate analog inhibitors. Methods Enzymol 249, 284 – 312.en_US
dc.identifier.citedreferenceMorrison JF & Walsh CT ( 1988 ) The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol 61, 201 – 301.en_US
dc.identifier.citedreferenceBanerjee RV, Shane B, McGuire JJ & Coward JK ( 1988 ) Dihydrofolate synthetase and folylpolyglutamate synthetase – direct evidence for intervention of acyl phosphate intermediates. Biochemistry 27, 9062 – 9070.en_US
dc.identifier.citedreferenceValiaeva N, Bartley D, Konno T & Coward JK ( 2001 ) Phosphinic acid pseudopeptides analogous to glutamyl-gamma-glutamate: synthesis and coupling to pteroyl azides leads to potent inhibitors of folylpoly-gamma-glutamate synthetase. J Org Chem 66, 5146 – 5154.en_US
dc.identifier.citedreferenceMcGuire JJ, Haile WH, Valiaeva N, Bartley D, Guo JX & Coward JK ( 2003 ) Potent inhibition of human folylpolyglutamate synthetase by a phosphinic acid mimic of the tetrahedral reaction intermediate. Biochem Pharmacol 65, 315 – 318.en_US
dc.identifier.citedreferenceBartley DM & Coward JK ( 2005 ) A stereoselective synthesis of phosphinic acid phosphapeptides corresponding to glutamyl-gamma-glutamate and incorporation into potent inhibitors of folylpoly-gamma-glutamyl synthetase. J Org Chem 70, 6757 – 6774.en_US
dc.identifier.citedreferenceLin C-H, Chen S, Kwon DS, Coward JK & Walsh CT ( 1997 ) Aldehyde and phosphinate analogs of glutathione and glutathionylspermidine: potent, selective binding inhibitors of the E. coli bifunctional glutathionylspermidine synthetase/amidase. Chem Biol 4, 859 – 866.en_US
dc.identifier.citedreferenceKwon DS, Lin CH, Chen SJ, Coward JK, Walsh CT, Bollinger JM Jr ( 1997 ) Dissection of glutathionylspermidine synthetase/amidase from Escherichia coli into autonomously folding and functional synthetase and amidase domains. J Biol Chem 272, 2429 – 2436.en_US
dc.identifier.citedreferenceBollinger JM Jr, Kwon DS, Huisman GW, Kolter R & Walsh CT ( 1995 ) Glutathionylspermidine metabolism in Escherichia coli. Purification, cloning, overproduction, and characterization of a bifunctional glutathionylspermidine synthetase/amidase. J Biol Chem 270, 14031 – 14041.en_US
dc.identifier.citedreferenceChen SJ, Lin CH, Kwon DS, Walsh CT & Coward JK ( 1997 ) Design, synthesis, and biochemical evaluation of phosphonate and phosphonamidate analogs of glutathionylspermidine as inhibitors of glutathionylspermidine synthetase/amidase from Escherichia coli. J Med Chem 40, 3842 – 3850.en_US
dc.identifier.citedreferenceChen S, Lin CH, Walsh CT & Coward JK ( 1997 ) Novel inhibitors of trypanothione biosynthesis: synthesis and evaluation of a phosphinate analog of glutathionyl spermidine (GSP), a potent, slow-binding inhibitor of GSP synthetase. Bioorg Med Chem Lett 7, 505 – 510.en_US
dc.identifier.citedreferenceChen SJ & Coward JK ( 1998 ) Investigations on new strategies for the facile synthesis of polyfunctionalized phosphinates: phosphinopeptide analogues of glutathionylspermidine. J Org Chem 63, 502 – 509.en_US
dc.identifier.citedreferenceSegel IH ( 1975 ) Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems, Wiley Classics Library Edition Published 1993 edn. Wiley, New York, NY.en_US
dc.identifier.citedreferenceBrekken DL & Phillips MA ( 1998 ) Trypanosoma brucei γ-glutamylcysteine synthetase – characterization of the kinetic mechanism and the role of Cys-319 in cystamine inactivation. J Biol Chem 273, 26317 – 26322.en_US
dc.identifier.citedreferenceJez JM, Cahoon RE & Chen SX ( 2004 ) Arabidopsis thaliana glutamate-cysteine ligase – functional properties, kinetic mechanism, and regulation of activity. J Biol Chem 279, 33463 – 33470.en_US
dc.identifier.citedreferenceJez JM & Cahoon RE ( 2004 ) Kinetic mechanism of glutathione synthetase from Arabidopsis thaliana. J Biol Chem 279, 42726 – 42731.en_US
dc.identifier.citedreferenceBroom AD ( 1989 ) Rational design of enzyme-inhibitors – multisubstrate analog inhibitors. J Med Chem 32, 2 – 7.en_US
dc.identifier.citedreferenceMorrison JF ( 1982 ) The slow-binding and slow, tight-binding inhibition of enzyme-catalyzed reactions. Trends Biochem Sci 7, 102 – 105.en_US
dc.identifier.citedreferenceCopeland RA ( 2005 ) Tight binding inhibition. In Evaluation of Enzyme Inhbitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists, pp. 178 – 213. John Wiley & Sons, Hoboken, NJ.en_US
dc.identifier.citedreferenceAriyanayagam MR & Fairlamb AH ( 2001 ) Ovothiol and trypanothione as antioxidants in trypanosomatids. Mol Biochem Parasitol 115, 189 – 198.en_US
dc.identifier.citedreferenceAmssoms K, Oza SL, Ravaschino E, Yamani A, Lambeir AM, Rajan P, Bal G, Rodriguez JB, Fairlamb AH, Augustyns K et al. ( 2002 ) Glutathione-like tripeptides as inhibitors of glutathionylspermidine synthetase. Part 1: Substitution of the glycine carboxylic acid group. Bioorg Med Chem Lett 12, 2553 – 2556.en_US
dc.identifier.citedreferenceFeng Y & Coward JK ( 2006 ) Prodrug forms of N -[(4-deoxy-4-amino-10-methyl)pteroyl]glutamate-γ-[ψP(O)(OH)]-glutarate, a potent inhibitor of folylpoly-γ-glutamate synthetase: synthesis and hydrolytic stability. J Med Chem 49, 770 – 788.en_US
dc.identifier.citedreferenceFyfe PK, Oza SL, Fairlamb AH & Hunter WN ( 2008 ) Leishmania trypanothione synthetase–amidase structure reveals a basis for regulation of conflicting synthetic and hydrolytic activities. J Biol Chem 283, 17672 – 17680.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.