Show simple item record

The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America

dc.contributor.authorQian, Hongen_US
dc.contributor.authorBadgley, Catherine E.en_US
dc.contributor.authorFox, David L.en_US
dc.date.accessioned2010-06-01T22:45:03Z
dc.date.available2010-06-01T22:45:03Z
dc.date.issued2009-01en_US
dc.identifier.citationQian, Hong; Badgley, Catherine; Fox, David L. (2009). "The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America." Global Ecology and Biogeography 18(1): 111-122. <http://hdl.handle.net/2027.42/75718>en_US
dc.identifier.issn1466-822Xen_US
dc.identifier.issn1466-8238en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75718
dc.description.abstractAim  Spatial turnover of species, or beta diversity, varies in relation to geographical distance and environmental conditions, as well as spatial scale. We evaluated the explanatory power of distance, climate and topography on beta diversity of mammalian faunas of North America in relation to latitude. Location  North America north of Mexico. Methods  The study area was divided into 313 equal-area quadrats (241 × 241 km). Faunal data for all continental mammals were compiled for these quadrats, which were divided among five latitudinal zones. These zones were comparable in terms of latitudinal and longitudinal span, climatic gradients and elevational gradients. We used the natural logarithm of the Jaccard index (ln J ) to measure species turnover between pairs of quadrats within each latitudinal zone. The slope of ln J in relation to distance was compared among latitudinal zones. We used partial regression to partition the variance in ln J into the components uniquely explained by distance and by environmental differences, as well as jointly by distance and environmental differences. Results  Mammalian faunas of North America differ more from each other at lower latitudes than at higher latitudes. Regression models of ln J in relation to distance, climatic difference and topographic difference for each zone demonstrated that these variables have high explanatory power that diminishes with latitude. Beta diversity is higher for zones with higher mean annual temperature, lower seasonality of temperature and greater topographic complexity. For each latitudinal zone, distance and environmental differences explain a greater proportion of the variance in ln J than distance, climate or topography does separately. Main conclusions  The latitudinal gradient in beta diversity of North American mammals corresponds to a macroclimatic gradient of decreasing mean annual temperature and increasing seasonality of temperature from south to north. Most of the variance in spatial turnover is explained by distance and environmental differences jointly rather than distance, climate or topography separately. The high predictive power of geographical distance, climatic conditions and topography on spatial turnover could result from the direct effects of physical limiting factors or from ecological and evolutionary processes that are also influenced by the geographical template.en_US
dc.format.extent494757 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 Blackwell Publishingen_US
dc.subject.otherBeta Diversityen_US
dc.subject.otherClimateen_US
dc.subject.otherJaccard Indexen_US
dc.subject.otherLatitudinal Diversity Gradienten_US
dc.subject.otherMacroecologyen_US
dc.subject.otherMammalian Faunasen_US
dc.subject.otherSpatial Turnoveren_US
dc.titleThe latitudinal gradient of beta diversity in relation to climate and topography for mammals in North Americaen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMuseum of Paleontology, University of Michigan, 1109 Geddes Road, Ann Arbor, MI 48109, USA,en_US
dc.contributor.affiliationotherResearch and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA,en_US
dc.contributor.affiliationotherDepartment of Geology and Geophysics, University of Minnesota, 310 Pillsbury Drive, Minneapolis, MN 55455, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75718/1/j.1466-8238.2008.00415.x.pdf
dc.identifier.doi10.1111/j.1466-8238.2008.00415.xen_US
dc.identifier.sourceGlobal Ecology and Biogeographyen_US
dc.identifier.citedreferenceAhn, C.-H. & Tateishi, R. ( 1994 ) Development of a global 30-min grid potential evapotranspiration data set. Photogrammetry and Remote Sensing, 33, 12 – 21.en_US
dc.identifier.citedreferenceArita, H.T. ( 1997 ) The non-volant mammal fauna of Mexico: species richness in a megadiverse country. Biodiversity and Conservation, 6, 787 – 795.en_US
dc.identifier.citedreferenceBadgley, C. & Fox, D.L. ( 2000 ) Ecological biogeography of North American mammals: species density and ecological structure in relation to environmental gradients. Journal of Biogeography, 27, 1437 – 1467.en_US
dc.identifier.citedreferenceBarbour, M.G. & Billings, W.D. ( 1999 ) North American terrestrial vegetation, 2nd edn. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceBrown, R.J.E. ( 1960 ) The distribution of permafrost and its relation to air temperature in Canada and the U.S.S.R. Arctic, 13, 163 – 177.en_US
dc.identifier.citedreferenceCondit, R., Pitman, N., Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., NuÑez, P., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H.C., Losos, E. & Hubbell, S.P. ( 2002 ) Beta-diversity in tropical forest trees. Science, 295, 666 – 669.en_US
dc.identifier.citedreferenceCurrie, D.J. ( 1991 ) Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27 – 49.en_US
dc.identifier.citedreferenceDyer, L.A., Singer, M.S., Lill, J.T., Stireman, J.O., Gentry, G.L., Marquis, R.J., Ricklefs, R.E., Greeney, H.F., Wagner, D.L., Morais, H.C., Diniz, I.R., Kursar, T.A. & Coley, P.D. ( 2007 ) Host specificity of Lepidoptera in tropical and temperate forests. Nature, 448, 696 – 700.en_US
dc.identifier.citedreferenceGaston, K.J. ( 2000 ) Global patterns in biodiversity. Nature, 405, 220 – 227.en_US
dc.identifier.citedreferenceGaston, K.J., Davies, R.G., Orme, C.D.L., Olson, V.A., Thomas, G.H., Ding, T.-S., Rasmussen, P.C., Lennon, J.J., Bennett, P.M., Owens, I.P.F. & Blackburn, T.M. ( 2007 ) Spatial turnover in the global avifauna. Proceedings of the Royal Society of London B, 274, 1567 – 1574.en_US
dc.identifier.citedreferenceHall, E.R. ( 1981 ) The mammals of North America, 2nd edn. John Wiley, New York, NY.en_US
dc.identifier.citedreferenceHawkins, B.A. & Diniz-Filho, J.A.F. ( 2004 ) ‘Latitude’ and geographic patterns in species richness. Ecography, 27, 268 – 272.en_US
dc.identifier.citedreferenceHawkins, B.A. & Porter, E.E. ( 2003 ) Relative influences of current and historical factors on mammal and bird diversity patterns in deglaciated North America. Global Ecology and Biogeography, 12, 475 – 481.en_US
dc.identifier.citedreferenceHernÁndez FernÁndez, M. & Vrba, E.S. ( 2005 ) Rapoport effect and biomic specialization in African mammals: revisiting the climatic variability hypothesis. Journal of Biogeography, 32, 903 – 918.en_US
dc.identifier.citedreferenceHillebrand, H. ( 2004 ) On the generality of the latitudinal diversity gradient. The American Naturalist, 163, 192 – 211.en_US
dc.identifier.citedreferenceHutchinson, G.E. ( 1959 ) Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145 – 159.en_US
dc.identifier.citedreferenceJanis, C.M., Damuth, J. & Theodor, J.M. ( 2002 ) The origins and evolution of the North American grassland biome: the story from the hoofed mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 183 – 198.en_US
dc.identifier.citedreferenceJanzen, D.H. ( 1967 ) Why mountain passes are higher in the tropics. The American Naturalist, 101, 233 – 249.en_US
dc.identifier.citedreferenceJernvall, J. & Fortelius, M. ( 2002 ) Common mammals drive the evolutionary increase of hypsodonty in the Neogene. Nature, 417, 538 – 540.en_US
dc.identifier.citedreferenceKaufman, D.M. ( 1995 ) Diversity of New World mammals: universality of the latitudinal gradient of species and bauplans. Journal of Mammalogy, 76, 322 – 334.en_US
dc.identifier.citedreferenceKaufman, D.M. & Willig, M.R. ( 1998 ) Latitudinal patterns of mammalian species richness in the New World: the effect of sampling method and faunal group. Journal of Biogeography, 25, 795 – 805.en_US
dc.identifier.citedreferenceKoleff, P., Lennon, J.J. & Gaston, K.J. ( 2003 ) Are there latitudinal gradients in species turnover? Global Ecology and Biogeography, 12, 483 – 498.en_US
dc.identifier.citedreferenceLegendre, P. & Legendre, L. ( 1998 ) Numerical ecology, 2nd edn. Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceLegendre, P., Lapointe, F.-J. & Casgrain, P. ( 1994 ) Modeling brain evolution from behavior: a permutational regression approach. Evolution, 48, 1487 – 1499.en_US
dc.identifier.citedreferenceMittelbach, G.G., Schemske, D.W., Cornell, H.V., Allen, A.P., Brown, J.M., Bush, M.B., Harrison, S.P., Hurlbert, A.H., Knowlton, N., Lessios, H.A., McCain, C.M., McCune, A.R., McDade, L.A., McPeek, M.A., Near, T.J., Price, T.D., Ricklefs, R.E., Roy, K., Sax, D.F., Schluter, D., Sobel, J.M. & Turelli, M. ( 2007 ) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 10, 315 – 331.en_US
dc.identifier.citedreferenceNekola, J.C. & White, P.S. ( 1999 ) The distance decay of similarity in biogeography and ecology. Journal of Biogeography, 26, 867 – 878.en_US
dc.identifier.citedreferenceNew, M., Hulme, M. & Jones, P. ( 1999 ) Representing twentieth-century space-time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. Journal of Climate, 12, 829 – 856.en_US
dc.identifier.citedreferencePagel, M.D., May, R.M. & Collie, A.R. ( 1991 ) Ecological aspects of the geographical distribution and diversity of mammalian species. The American Naturalist, 137, 791 – 815.en_US
dc.identifier.citedreferencePianka, E.R. ( 1966 ) Latitudinal gradients in species diversity: a review of concepts. The American Naturalist, 100, 33 – 46.en_US
dc.identifier.citedreferenceQian, H. & Ricklefs, R.E. ( 2007 ) A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecology Letters, 10, 737 – 744.en_US
dc.identifier.citedreferenceQian, H., Ricklefs, R.E. & White, P.S. ( 2005 ) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters, 8, 15 – 22.en_US
dc.identifier.citedreferenceRodrÍguez, P. & Arita, H.T. ( 2004 ) Beta diversity and latitude in North American mammals: testing the hypothesis of covariation. Ecography, 27, 547 – 556.en_US
dc.identifier.citedreferenceRohde, K. ( 1992 ) Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65, 514 – 527.en_US
dc.identifier.citedreferenceRosenzweig, M.L. ( 1995 ) Species diversity in space and time. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceSimpson, G.G. ( 1964 ) Species density of North American recent mammals. Systematic Zoology, 13, 57 – 73.en_US
dc.identifier.citedreferenceSoininen, J., McDonald, R. & Hillebrand, H. ( 2007 ) The distance decay of similarity in ecological communities. Ecography, 30, 3 – 12.en_US
dc.identifier.citedreferenceStevens, G.C. ( 1989 ) The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist, 133, 240 – 256.en_US
dc.identifier.citedreferenceStevens, R.D. & Willig, M.R. ( 2002 ) Geographical ecology at the community level: perspectives on the diversity of New World bats. Ecology, 83, 545 – 560.en_US
dc.identifier.citedreferenceStorch, D., Evans, K.L. & Gaston, K.J. ( 2005 ) The species-area-energy relationship. Ecology Letters, 8, 487 – 492.en_US
dc.identifier.citedreferenceSvenning, J.-C. & Skov, F. ( 2004 ) Limited filling of the potential range in European tree species. Ecology Letters, 7, 565 – 573.en_US
dc.identifier.citedreferenceWhittaker, R.H. ( 1977 ) Evolution of species diversity in land communities. Evolutionary Biology, 10, 1 – 67.en_US
dc.identifier.citedreferenceWillig, M.R., Kaufman, D.M. & Stevens, R.D. ( 2003 ) Latitudinal gradients in biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34, 273 – 309.en_US
dc.identifier.citedreferenceWilson, D.E. & Reeder, D.M. ( 1993 ) Mammal Species of the World: a taxonomic and geographic reference, 2nd edn. Smithsonian Institution Press, Washington, DC.en_US
dc.identifier.citedreferenceYoungman, P.M. ( 1975 ) Mammals of the Yukon Territory. Publications in Zoology, No. 10. National Museums of Canada, Ottawa, Ontario.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.