Show simple item record

Fracture-fill calcite as a record of microbial methanogenesis and fluid migration: a case study from the Devonian Antrim Shale, Michigan Basin

dc.contributor.authorBudai, J. M.en_US
dc.contributor.authorMartini, A. M.en_US
dc.contributor.authorWalter, Lynn M.en_US
dc.contributor.authorKu, T. C. W.en_US
dc.date.accessioned2010-06-01T22:45:11Z
dc.date.available2010-06-01T22:45:11Z
dc.date.issued2002-08en_US
dc.identifier.citationBudai, J. M.; Martini, A. M.; Walter, L. M.; Ku, T. C. W. (2002). "Fracture-fill calcite as a record of microbial methanogenesis and fluid migration: a case study from the Devonian Antrim Shale, Michigan Basin." Geofluids 2(3): 163-183. <http://hdl.handle.net/2027.42/75720>en_US
dc.identifier.issn1468-8115en_US
dc.identifier.issn1468-8123en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75720
dc.description.abstractThe Devonian Antrim Shale is an organic-rich, naturally fractured black shale in the Michigan Basin that serves as both a source and reservoir for natural gas. A well-developed network of major, through-going vertical fractures controls reservoir-scale permeability in the Antrim Shale. Many fractures are open, but some are partially sealed by calcite cements that retain isotopic evidence of widespread microbial methanogenesis. Fracture filling calcite displays an unusually broad spectrum of δ 13 C values (+34 to −41‰ PDB), suggesting that both aerobic and anaerobic bacterial processes were active in the reservoir. Calcites with high δ 13 C values (>+15‰) record cementation of fractures from dissolved inorganic carbon (DIC) generated during bacterial methanogenesis. Calcites with low δ 13 C values (<−32‰) are solely associated with outcrop samples and record methane oxidation during cement precipitation. Fracture-fill calcite with δ 13 C values between −10 and −30‰ can be attributed to variable organic matter oxidation pathways, methane oxidation, and carbonate rock buffering. Identification of 13 C-rich calcite provides unambiguous evidence of biogenic methane generation and may be used to identify gas deposits in other sedimentary basins. It is likely that repeated glacial advances and retreats exposed the Antrim Shale at the basin margin, enhanced meteoric recharge into the shallow part of the fractured reservoir, and initiated multiple episodes of bacterial methanogenesis and methanotrophic activity that were recorded in fracture-fill cements. The δ 18 O values in both formation waters and calcite cements increase with depth in the basin (−12 to −4‰ SMOW, and +21 to +27‰ PDB, respectively). Most fracture-fill cements from outcrop samples have δ 13 C values between −41 and −15‰ PDB. In contrast, most cement in cores have δ 13 C values between +15 and +34‰ PDB. Radiocarbon and 230 Th dating of fracture-fill calcite indicates that the calcite formed between 33 and 390 ka, well within the Pleistocene Epoch.en_US
dc.format.extent2321876 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science, Ltden_US
dc.rightsBlackwell Science Ltd, 2002en_US
dc.subject.otherAntrim Shaleen_US
dc.subject.otherFracture-fill Calciteen_US
dc.subject.otherMethanogenesisen_US
dc.titleFracture-fill calcite as a record of microbial methanogenesis and fluid migration: a case study from the Devonian Antrim Shale, Michigan Basinen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherGreat Lakes Colleges Association, Ann Arbor, MI, USA;en_US
dc.contributor.affiliationotherDepartment of Geology, Amherst College, Amherst, MA, USA;en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75720/1/j.1468-8123.2002.00036.x.pdf
dc.identifier.doi10.1046/j.1468-8123.2002.00036.xen_US
dc.identifier.sourceGeofluidsen_US
dc.identifier.citedreferenceApotria TG, Kaiser CJ, Cain BA ( 1994 ) Fracturing and stress history of the Devonian Antrim Shale, Michigan Basin. In: Rock Mechanics (eds Nelson, PP, Lauback, SE ), pp. 809 – 16. Balkema, Rotterdam.en_US
dc.identifier.citedreferenceCaramanica FP ( 1994 ) Impact of reservoir properties and fractures on gas production, Antrim Shale, Michigan Basin. Gas Research Institute Topical Report, Contract no. 5086–213–1390.en_US
dc.identifier.citedreferenceCercone KR, Pollack HN ( 1991 ) Thermal maturity of the Michigan Basin. In: Early Sedimentary Evolution of the Michigan Basin (eds Catacosinos, PP, Daniels, PA ), 256. pp. 1 – 11. Geological Society of America, Special Paper, Boulder, Colorado.en_US
dc.identifier.citedreferenceClark JA ( 1982 ) Glacial loading: a cause of natural fracturing and a control of the present stress state in regions of high Devonian shale gas production. Society of Petroleum Engineers/U. S. Department of Energy #10798. Sol. Pet. Eng., Pittsburgh, PA.en_US
dc.identifier.citedreferenceColeman DD, Liu C-L, Hackley KC, Pelphrey SR ( 1995 ) Isotopic identification of landfill methane. Environmental Geosciences, 2, 95 – 103.en_US
dc.identifier.citedreferenceColeman DD, Liu CL, Riley KM ( 1988 ) Microbial methane in the shallow Paleozoic sediments and glacial deposits of Illinois, U.S.A. Chemical Geology, 71, 23 – 40.en_US
dc.identifier.citedreferenceCraddock JP, Jackson M, Van der Pluijm BA, Versical RT ( 1993 ) Regional shortening fabrics in eastern North America — far field stress transmission from the Appalachian–Ouachita orogenic belt tectonics. Tectonics, 12, 257 – 64.en_US
dc.identifier.citedreferenceCraddock JP, van der Pluijm BA ( 1989 ) Late Paleozoic deformation of the cratonic carbonate cover of eastern North America. Geology, 17, 416 – 9.en_US
dc.identifier.citedreferenceDecker D, Coates JMP, Wicks D ( 1992 ) Stratigraphy, gas occurrence, formation evaluation and fracture characterization of the Antrim Shale, Michigan Basin. Gas Research Institute Topical Report, Contract no. 5091–213–2305.en_US
dc.identifier.citedreferenceDeines P, Langmuir D, Harmon RS ( 1974 ) Stable carbon isotope ratios and existence of a gas-phase in evolution of carbonate ground waters. Geochimica et Cosmochimica Acta, 38, 1147 – 64.en_US
dc.identifier.citedreferenceDellapenna TM ( 1991 ) Sedimentological, structural, and organic geochemical controls on natural gas occurrence in the Antrim Formation in Otsego County, Michigan. Unpublished Masters Thesis. Western Michigan University, Kalamazoo, MI.en_US
dc.identifier.citedreferenceDellapenna TM, Harrison WB ( 1993 ) Mineralogic, petrophysical and organic geochemical properties, Antrim Shale, Michigan Basin. In: Antrim Shale Workshop. Gas Research Institute Report, GRI-9310485, 34. Gas Research Institute, Chicago, IL.en_US
dc.identifier.citedreferenceDesaulniers DE, Cherry JA, Fritz P ( 1981 ) Origin, age and movement of pore water in argillaceous Quaternary deposits at 4 sites in Southwestern Ontario. Journal of Hydrology, 50, 231 – 57.en_US
dc.identifier.citedreferenceDettman DL, Lohmann KC ( 1995 ) Microsampling carbonates for stable isotope and minor element analysis; physical separation on a 20 micrometer scale. Journal of Sedimentary Research, 65, 566 – 9.en_US
dc.identifier.citedreferenceEdwards RL, Chen JH, Wasserburg GJ ( 1987 ) U-238 U-234–Th-230–Th-232 systematics and the precise measurement of time over the past 500 000 years. Earth and Planetary Science Letters, 81, 175 – 92.en_US
dc.identifier.citedreferenceEngelder T ( 1993 ) Stress Regimes in the Lithosphere. Princeton University Press, Princeton, NY.en_US
dc.identifier.citedreferenceEvamy BD ( 1963 ) The application of a chemical staining technique to a study of dedolomitization. Sedimentology, 2, 164 – 70.en_US
dc.identifier.citedreferenceFarrand WR ( 1982 ) Quaternary Geology of Southern Michigan, 1: 500,000. Michigan Department of Natural Resources, Geological Survey Division, Lansing.en_US
dc.identifier.citedreferenceFarrand WR ( 1988 ) The Glacial Lakes Around Michigan. Michigan Department of Natural Resources, Geological Survey Division, Bulletin, 4. pp. 1–17. Michigan Department of Natural Resources, Geological Survey Division, Lansing, MI.en_US
dc.identifier.citedreferenceFarrand WR, Drexler C ( 1985 ) Late Wisconsinan and Holocene history of the Lake Superior basin. Geological Association of Canada Special Paper, 30, 17 – 32.en_US
dc.identifier.citedreferenceFarrand WR, Eschman DF ( 1974 ) Glaciation of the Southern Peninsula in Michigan: a review. Michigan Academician, 7, 31 – 56.en_US
dc.identifier.citedreferenceFisher JH, Barratt MW, Droste JB, Shaver RH ( 1988 ) Michigan Basin. In: Sedimentary Cover–North America Craton, U. S. (ed. Sloss, L L ), D-2, pp. 361 – 81. Geological Society of America, The Geology of North America. Geological Society of America, Boulder, CO.en_US
dc.identifier.citedreferenceGalimov EM ( 1980 ) C 13 /C 12 in kerogen. In: Kerogen (ed. Durand, B ), pp. 271 – 300. Editions Technip, Paris, France.en_US
dc.identifier.citedreferenceGalimov EM, Migdisov AA, Ronov AB ( 1975 ) Variation in the isotopic composition of carbonate and organic carbon in sedimentary rocks during Earth's history. Geochemica International, 12, 1 – 19.en_US
dc.identifier.citedreferenceGross MR, Engelder T ( 1991 ) A case for neotectonic joints along the Niagara Escarpment. Tectonics, 10, 631 – 41.en_US
dc.identifier.citedreferenceGutschick RC, Sandberg CA ( 1991 ) Upper Devonian biostratigraphy of Michigan Basin. In: Early Sedimentary Evolution of the Michigan Basin (eds Catacosinos, PA, Daniels, PA ), 256, pp. 155 – 79. Geological Society of America, Special Paper, Geological Society of America, Boulder, CO.en_US
dc.identifier.citedreferenceHathon C, Sibley D, Cambray FW ( 1980 ) The origin of quartz in Antrim Shale. U. S. Department of Energy Report FE-2346–61, 32.en_US
dc.identifier.citedreferenceHoagland JR ( 1996 ) Recharge to discharge groundwater travel times in the michigan basin and the effect of glacial ice loading. PhD Dissertation. Michigan State University, East Lansing, MI.en_US
dc.identifier.citedreferenceHolst TB, Foote GR ( 1981 ) Joint orientation in Devonian rocks in the northern portion of the Lower Peninsula of Michigan. Geological Society of America Bulletin Part I, 92, 85 – 93.en_US
dc.identifier.citedreferenceIrwin H, Curtis CD, Coleman ML ( 1977 ) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature, 269, 209 – 13.en_US
dc.identifier.citedreferenceIvanovitch M, Harmon RS ( 1982 ) Uranium Series Disequilibrium. Applications to Environmental Problems. Oxford University Press, Oxford.en_US
dc.identifier.citedreferenceKesling RV, Johnson AM, Sorensen HO ( 1976 ) Devonian Strata of the Afton–Onaway Area, Michigan. University of Michigan Papers on Paleontology, 17, 148.en_US
dc.identifier.citedreferenceMartini AM, Budai JM, Walter LM, Schoell M ( 1996 ) Microbial generation of economic accumulations of methane within a shallow organic-rich shale. Nature, 383, 155 – 8.en_US
dc.identifier.citedreferenceMartini AM, Walter LM, Budai JM, Ku TCW, Kaiser CJ, Schoel M ( 1998 ) Genetic and temporal relations between formation waters and biogenic methane: Upper Devonian Antrim Shale, Michigan Basin, USA. Geochimica et Cosmochimica Acta, 62, 1699 – 720.en_US
dc.identifier.citedreferenceMartini AM, Walter LM, Ku TCW, Budai JM, Schoell M ( in review ) Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan Basin. American Association of Petroleum Geologists Bulletin.en_US
dc.identifier.citedreferenceMatthews RD ( 1993 ) Review and revisions of the Devonian-Mississippian stratigraphy in the Michigan Basin. U. S. Geological Survey Bulletin, 1909, D1 – D85.en_US
dc.identifier.citedreferenceMorse JW, Mackenzie FT ( 1990 ) Geochemistry of sedimentary carbonates. Developments in Sedimentology, 48, 707.en_US
dc.identifier.citedreferenceO'Neil JR, Clayton RN, Mayeda TK ( 1969 ) Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics, 51, 5547 – 5558.en_US
dc.identifier.citedreferencePlumb RA, Cox JW ( 1987 ) Stress directions in eastern North America determined to 4.5 km from borehole elongation measurements. Journal of Geophysical Research, 92, 4805 – 16.en_US
dc.identifier.citedreferencePollard DD, Aydin A ( 1988 ) Progress in understanding jointing over the past century. Geological Society of America Bulletin, 100, 1181 – 204.en_US
dc.identifier.citedreferenceRaiswell R ( 1988 ) Chemical model for the origin of minor limestone–shale cycles by anaerobic methane oxidation. Geology, 16, 641 – 4.en_US
dc.identifier.citedreferenceRullkÖtter J, Marzi R, Meyers PA ( 1992 ) Biological markers in Paleozoic sedimentary rocks and crude oils from the Michigan Basin: reassessment of sources and thermal history of organic matter. In: Early Organic Evolution: Implications for Mineral and Energy Resources (ed. Schidlowski, M ), pp. 324 – 35. Springer-Verlag, New York.en_US
dc.identifier.citedreferenceRuotsala AP ( 1980 ) Mineralogy of Antrim Shale, Michigan. U. S. Department of Energy Report FE-2346-79, 85.en_US
dc.identifier.citedreferenceSiegel DI ( 1991 ) Evidence for dilution of deep, confined ground water by vertical recharge of isotopically heavy Pleistocene water. Geology, 19, 433 – 6.en_US
dc.identifier.citedreferenceSiegel DI, Chamberlain SC, Dossert WP ( 1987 ) The isotopic and chemical evolution of mineralization in septarian concretions: Evidence for episodic paleohydrogeologic methanogenesis. Geological Society of America Bulletin, 99, 385 – 94.en_US
dc.identifier.citedreferenceSpeece MA, Bowen ED, Folcik JL, Pollack HN ( 1985 ) Analysis of temperatures in sedimentary basins; The Michigan Basin. Geophysics, 50, 1318 – 34.en_US
dc.identifier.citedreferenceStueber AM, Walter LM ( 1994 ) Glacial recharge and paleohydrologic flow systems in the Illinois Basin: evidence from chemistry of Ordovician carbonate (Galena) formation waters. Geological Society of America Bulletin, 106, 1430 – 9.en_US
dc.identifier.citedreferenceVersical RT ( 1991 ) Basement control on the development of selected Michigan Basin oil fields as constrained by fabric elements in Paleozoic limestones. Masters Thesis. Western Michigan University, Western Michigan.en_US
dc.identifier.citedreferenceWalter LM, Budai JM, Abriola LM, Stearns CH, Martini AM, Ku TCW ( 1996 ) Hydrogeochemistry of the Antrim Shale, Northern Michigan Basin. Gas Research Institute Annual Report, GRI-95/0251, 171.en_US
dc.identifier.citedreferenceWalter LM, Budai JM, Martini AM, Ku TCW ( 1997 ) Hydrogeochemistry of the Antrim Shale in the Michigan Basin. Gas Research Institute Final Report, GRI-97/0127, 95.en_US
dc.identifier.citedreferenceWardlaw M ( 1981 ) Origin and geochemistry of carbonate concretions Antrim Shale (Devonian, Michigan Basin). Unpublished Masters Thesis. Michigan State University, East Lansing, MI.en_US
dc.identifier.citedreferenceZoback ML, Zoback MD ( 1989 ) Tectonic stress field of the continental United States. Geological Society of America Memoir, 172, 523 – 39.en_US
dc.identifier.citedreferenceZuber MD ( 1995 ) Advancing the Understanding of Antrim Shale Reservoir Engineering Methods. July 1993 to June 1995. Gas Research Institute, Topical Report, GRI Contract #5093-210-2635, GRI-95/0292.2.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.